The Jet-Flap in Centrifugal Turbo Machines

Author(s):  
F. R. Goldschmied

Increased flow and pressure rise at constant speed have been achieved for a centrifugal impeller by application of the jet-flap and of mechanical tip flaps to backward-curved airfoil blades. Flow increments up to 16 percent and pressure increments up to 36 percent have been obtained with a control efficiency of 85 percent. Peak total-to-total efficiencies of the basic impeller have been found to be over 88 percent. An experimental correlation has been found for radial jet-flap cascades between lift increment and jet thrust, cascade solidity, jet angle, and effective blade aspect ratio.

Author(s):  
Ja´nos Vad ◽  
Ali R. A. Kwedikha ◽  
Helmut Jaberg

Experimental and computational studies were carried out in order to survey the energetic aspects of forward and backward sweep in axial flow rotors of low aspect ratio blading for incompressible flow. It has been pointed out that negative sweep tends to increase the lift, the flow rate and the ideal total pressure rise in the vicinity of the endwalls. Just the opposite tendency was experienced for positive sweep. The local losses were found to develop according to combined effects of sweep near the endwalls, endwall and tip clearance losses, and profile drag influenced by re-arrangement of the axial velocity profile. The forward-swept bladed rotor showed reduced total efficiency compared to the unswept and swept-back bladed rotors. This behavior has been explained on the basis of analysis of flow details. It has been found that the swept bladings of low aspect ratio tend to retain the performance of the unswept datum rotor even in absence of sweep correction.


1988 ◽  
Vol 92 (920) ◽  
pp. 390-396 ◽  
Author(s):  
A. Klein

SummaryAn experimental correlation is presented between the losses and the inlet flow conditions in short dump diffusers for turbojet combustors. Cascades of compressor blades upstream of the diffuser were used to make the flow field at inlet similar to that in a real jet engine. The flow field was altered in two ways — by varying the distance between the cascades and the diffuser inlet plane and by changing the blade aspect ratio. The measurements show clearly that distortions in the radial direction affect the losses to a much larger extent than non-uniformities in the circumferential direction. In consequence, the performance can be correlated to a satisfactory degree of accuracy simply by using the radial blockage factor at inlet.


1981 ◽  
Vol 103 (2) ◽  
pp. 271-278 ◽  
Author(s):  
M. Ishida ◽  
Y. Senoo

The pressure distribution along the shroud is measured for three types of centrifugal impeller at seven different values of tip clearance each. The change of input power due to a change of tip clearance is related to the effective blockage at the impeller tip. Since the change of input power is little for the test cases, the variation of local pressure gradient along the shroud is mostly attributed to the change of local pressure loss. The local pressure loss is related to the local tip clearance ratio and to the local pressure gradient based on the deceleration of relative velocity in the impeller. Since the local pressure gradient is largest near the throat of the impeller, for many impellers the clearance ratio at the throat is used as the representative value. The tip clearance loss is related to the clearance ratio and the pressure rise based on the deceleration of relative velocity in the impeller. A good correlation is observed in all cases at various flow rate.


Author(s):  
Lawrence A. Hawkins ◽  
Alexei Filatov ◽  
Rasish Khatri ◽  
Christopher DellaCorte ◽  
Samuel A. Howard

Abstract NASA is leading the design and development of a next-generation CO2 removal system, the Four Bed Carbon Dioxide Scrubber (4BCO2), and intends to use the International Space Station (ISS) as its testbed. A key component of the system is the blower that provides the airflow through the CO2 sorbent beds. To improve performance and reliability, magnetic levitation (magnetic bearings) will be used in lieu of more conventional bearings (e.g. ball bearings or air bearings) to improve resistance to contaminants and enable extensibility with regards to blower speed, pressure rise and mass flow rate. The blower will pull air from the ISS through an adsorbing desiccant bed and push it through a CO2 sorbent bed and desorbing desiccant bed. The 4BCO2 blower features an overhung permanent magnet motor, a centrally located five-axis, active magnetic bearing system, backup bearings, and an overhung centrifugal impeller in a very compact package. Magnetic bearings are a natural choice for this application due to low power consumption, low transmitted vibration and oil free operation. This paper describes the design considerations and design selections for the blower system with a focus on the magnetic bearings. Magnetic FEA of the actuator/sensor system, rotordynamics/controls analysis, and backup bearing drop simulations are discussed in detail. It is expected that the successful implementation of magnetic bearings for this space application will encourage the more widespread adoption in other space applications (e.g., fluid pumps, reaction wheels) that challenge conventional bearing technologies.


Author(s):  
Larry Hawkins ◽  
Alexei Filatov ◽  
Rasish Khatri ◽  
Chris DellaCorte ◽  
S. Adam Howard

Abstract NASA is leading the design and development of a next-generation CO2 removal system, the Four Bed Carbon Dioxide Scrubber (4BCO2), and intends to use the International Space Station (ISS) as its testbed. A key component of the system is the blower that provides the airflow through the CO2 sorbent beds. To improve performance and reliability, magnetic levitation (magnetic bearings) will be used in lieu of more conventional bearings (e.g. ball bearings or air bearings) to improve resistance to contaminants and enable extensibility with regards to blower speed, pressure rise and mass flow rate. The blower will pull air from the ISS through an adsorbing desiccant bed and push it through a CO2 sorbent bed and desorbing desiccant bed. The 4BCO2 blower features an overhung permanent magnet motor, a centrally located five-axis, active magnetic bearing system, backup bearings, and an overhung centrifugal impeller in a very compact package. Magnetic bearings are a natural choice for this application due to low power consumption, low transmitted vibration and oil free operation. This paper describes the design considerations and design selections for the blower system with a focus on the magnetic bearings. Magnetic FEA of the actuator/sensor system, rotordynamics/controls analysis, and backup bearing drop simulations are discussed in detail. It is expected that the successful implementation of magnetic bearings for this space application will encourage the more widespread adoption in other space applications (e.g., fluid pumps, reaction wheels) that challenge conventional bearing technologies.


Author(s):  
David W. Erickson ◽  
Choon S. Tan ◽  
Michael Macrorie

Truncating the exit of a discrete passage centrifugal compressor diffuser is observed to enhance a research compressor’s stall line. By interrogating the experimental data along with a set of well-designed Reynolds-Averaged Navier Stokes computations, this improvement is traced to reduced impact of secondary flows on the truncated diffuser’s boundary layer growth. The secondary flow system is characterized by counter-rotating streamwise vortex pairs that persist throughout the diffuser passage. The vortices are traced to two sources: background vortices resulting from impeller exit flow non-uniformity, and incidence vortices resulting from flow separation off the leading edge cusps unique to a discrete passage diffuser. The incidence vortices detrimentally impact the diffuser pressure rise capability by accumulating high loss flow along the diffuser wall near the plane of symmetry between the vortices. This contributes to a large passage separation in the baseline diffuser. Using reduced order flow modeling, the impact of the vortices on the boundary layer growth is shown to scale inversely with diffuser aspect ratio, and thus the separation extent is reduced for the higher aspect ratio truncated diffuser. Because the diffuser incidence angle influences the strength and location of the vortices, this mechanism can affect the slope of the compressor’s pressure rise characteristic and impact its stall line. Stall onset for the baseline diffuser configuration is initiated by the transition of the vortex location and corresponding passage separation between diffuser pressure and suction sides with increased cusp incidence. Conversely, because the extent of the passage separation in the truncated diffuser is diminished, the switch in separation from pressure to suction side does not immediately initiate instability.


Author(s):  
Chetan S. Mistry ◽  
A. M. Pradeep

This paper discusses the results of a parametric study of a pair of contra-rotating axial fan rotors. The rotors were designed to deliver a mass flow of 6 kg/s at 2400 rpm. The blades were designed with a low hub-tip ratio of 0.35 and an aspect ratio of 3.0. Numerical and experimental studies were carried out on these contra-rotating rotors operating at a Reynolds number of 1.25 × 105 (based on blade chord). The axial spacing between the rotors was varied between 50 to 120 % of the chord of rotor 1. The performance of the rotors was evaluated at each of these spacing at design and off-design speeds. The results from the numerical study (using ANSYS CFX) were validated using experimental data. In spite of certain limitations of CFD under certain operating conditions, it was observed that the results agreed well with those from the experiments. The performance of the fan was evaluated based on the variations of total pressure, velocity components and flow angles at design and off-design operating conditions. The measurement of total pressure, flow angles etc. are taken upstream of the first rotor, between the two rotors and downstream of the second rotor. It was observed that the aerodynamics of the flow through a contra rotating stage is significantly influenced by the axial spacing between the rotors and the speed ratio of the rotors. With increasing speed ratios, the strong suction generated by the second rotor, improves the stage pressure rise and the stall margin. Lower axial spacing on the other hand, changes the flow incidence to the second rotor and thereby improves the overall performance of the stage. The performance is investigated at different speed ratios of the rotors at varying axial spacing.


1980 ◽  
Author(s):  
M. Ishida ◽  
Y. Senoo

The pressure distribution along the shroud is measured for three types of centrifugal impeller at seven different values of tip clearance each. The change of input power due to a change of tip clearance is related to the effective blockage at the impeller tip. Since the change of input power is little for the test cases, the variation of local pressure gradient along the shroud is mostly attributed to the change of local pressure loss. The local pressure loss is related to the local tip clearance ratio and to the local pressure gradient based on the decleration of relative velocity in the impeller. Since the local pressure gradient is largest near the throat of impeller is used as the representative value. The tip clearance loss is related to the clearance ratio and the pressure rise based on the deceleration of relative velocity in the impeller. A good correlation is observed in all cases at various flow rate.


Author(s):  
Chetan S. Mistry ◽  
A. M. Pradeep

This paper explores the effect of speed ratio and axial spacing between high aspect ratio, low speed contra-rotating pair rotors on their aerodynamic performance. The blades were designed with a low hub-tip ratio of 0.35 and an aspect ratio of 3.0. Numerical and experimental studies are carried out on these contra-rotating rotors operating at a Reynolds number of 1.258 × 105 (based on blade chord). The first and second rotors were designed to develop a pressure rise of 1100 Pa and 900 Pa, respectively, for total mass flow rate of 6 kg/s when both operating at a design speed of 2400 rpm. The performance of the fan was evaluated based on variations of total pressure and flow angles at off-design operating conditions. The measurementsof total pressure rise, flow angles etc. are taken upstream of the first rotor and in between the two rotors and downstream of the second rotor. The performance of the contra rotating stage is mainly influenced by the axial spacing between the rotors and speed ratio of both the rotors. The study reveals that the aerodynamics of the contra-rotating stage and stall margin is significantly affected by both the speed ratio as well as the axial spacing between the rotors. It was found that with increasing the speed ratio, the strong suction generated by the second rotor, improves the stage pressure rise and stall margin. Lower axial spacing changes the flow incidence to the second rotor and thereby improves the overall performance of the stage. This however, is accompanied by an increased noise level. The performance is investigated at different speed ratios of the rotors at varying axial spacing. Detailed numerical simulations have been conducted using ANSYS CFX13© using mixing plane approach between rotors. Numerical simulations are compared with experimental results at off-design conditions. These results are validated using the experimental data. Numerical simulations are expected to provide deeper insight into the flow physics of contra-rotating rotors which may be difficult to capture experimentally.


Author(s):  
Kazuhiro Tsukamoto ◽  
Chisachi Kato

Abstract This work investigates the unsteady fluctuation of inducer recirculation stemming from the diffuser stall that occurs near the surge condition. Experiments and unsteady numerical simulation were utilized for the investigation. Inducer recirculation is known to occur near the surge occurrence flow rate, where the flow rate has a positive slope of the performance curve and the recirculation extends to the upstream of the impeller inlet when decreasing the flow rate more. However, few papers have investigated the unsteady phenomenon of the recirculation, even though the surge is what causes it. Clarifying the recirculation phenomenon is essential in terms of expanding the operation range to the lower flow rate for centrifugal turbomachinery. This was our motivation for investigating the unsteady oscillation phenomenon of the inducer recirculation. We investigated a single-stage centrifugal blower with the maximum pressure rise ratio of 1.2 and focused on the flow rates near surge occurrence. The blower was equipped with an open type centrifugal impeller, a vane-less diffuser, and a scroll casing. The blower performance and pressure time-history data were obtained by experiments. Unsteady simulations using large eddy simulation (LES) were conducted to investigate the flow field in the blower for each flow rate. The obtained performance curve showed that the positive slope of the pressure rise at the lower flow rate was due to the impeller stall and that the inducer recirculation extending upstream of the suction pipe near the slope of the curve was flat. LES analysis revealed that this inducer recirculation had two typical fluctuation peaks, one at 20% of the rotation frequency and the other at 95%. We also found that the stall cell at the impeller inlet propagated in the circumferential direction and swirled at almost the same frequency as the impeller rotation. In addition, the fluctuation at the diffuser derived from the diffuser rotating stall propagated to the suction pipe.


Sign in / Sign up

Export Citation Format

Share Document