Gas Turbine Power Plants of Large Unit Capacity in Standard Construction

Author(s):  
K. H. Lange ◽  
H. J. Heinecke

Contrary to the common practice in the U.S.A. it was usual in Europe to build Gas Turbine Power Plants individually. Kraftwerk Union AG now reports on a new pre-engineered standard concept which has been designed by its Engineering Department. This paper describes the pre-engineered concept and the standardization of components. Furthermore, it indicates the possibility of extending this standard plant to a KWU Exhaust Heat Recovery Plant.

Author(s):  
W. V. Hambleton

This paper represents a study of the overall problems encountered in large gas turbine exhaust heat recovery systems. A number of specific installations are described, including systems recovering heat in other than the conventional form of steam generation.


Author(s):  
Bouria Faqihi ◽  
Fadi A. Ghaith

Abstract In the Gulf Cooperation Council region, approximately 70% of the thermal power plants are in a simple cycle configuration while only 30% are in combined cycle. This high simple to combined cycle ratio makes it of a particular interest for original equipment manufacturers to offer exhaust heat recovery upgrades to enhance the thermal efficiency of simple cycle power plants. This paper aims to evaluate the potential of incorporating costly-effective new developed heat recovery methods, rather than the complex products which are commonly available in the market, with relevant high cost such as heat recovery steam generators. In this work, the utilization of extracted heat was categorized into three implementation zones: use within the gas turbine flange-to-flange section, auxiliary systems and outside the gas turbine system in the power plant. A new methodology was established to enable qualitative and comparative analyses of the system performance of two heat extraction inventions according to the criteria of effectiveness, safety and risk and the pressure drop in the exhaust. Based on the conducted analyses, an integrated heat recovery system was proposed. The new system incorporates a circular duct heat exchanger to extract the heat from the exhaust stack and deliver the intermediary heat transfer fluid to a separate fuel gas exchanger. This system showed superiority in improving the thermodynamic cycle efficiency, while mitigating safety risks and avoiding undesired exhaust system pressure drop.


Author(s):  
V. L. Eriksen ◽  
J. M. Froemming ◽  
M. R. Carroll

Heat recovery boilers utilizing the exhaust from gas turbines continue to be viable as industrial cogeneration systems. This paper outlines the types of heat recovery boilers available for use with gas turbines (1–100 MW). It discusses the design and performance criteria for both unfired and supplementary fired gas turbine exhaust heat recovery boilers of single and multiple pressure levels. Equations to assist in energy balances are included along with design features of heat recovery system components. The economic incentive to achieve the maximum practical heat recovery versus the impact on boiler design and capital cost are examined and discussed. It is intended that the information presented in this paper will be of use to individuals who are not intimately familiar with gas turbine heat recovery systems so that they can better specify and evaluate potential systems.


1975 ◽  
Author(s):  
G. W. Bush ◽  
J. W. Godbey

This paper will present the results, to date, of the joint effort by the user-manufacturer coauthors to develop a reliable and generally accepted performance test procedure for gas turbine exhaust heat recovery steam generators. The knowledge and experience gained from several field tests will be detailed to support recommendations of procedures to follow and instrumentation to use in overcoming some very perplexing problems.


Author(s):  
A. Radey Shouman ◽  
A. R. Shouman

Combined gas turbine-steam turbine cycles have gained widespread acceptance as the most efficient utilization of the gas turbine for power generation, particularly for large power plants. In order to maximize the achievable thermal efficiency, more than one exhaust heat recovery boiler is used. The current trend is to use three boilers at three different operating pressures, which improves thermal efficiency but significantly increases the initial cost of the plant. There are advantages in replacing an exhaust heat recovery system using multiple boilers by a single heat exchanger in which the water side pressure is above the critical pressure of water; we shall refer to such a heat exchanger as a supercritical heat exchanger. The supercritical steam leaving the heat exchanger is expanded in a two phase turbine and then fed into the engine combustor. A condenser and a water treatment system are used to recover most of the water in the exhaust stream. A turbine system identical to the basic engine turbine system is added in parallel in order to allow for the operation with increased mass flow due to the steam injection. To achieve maximum efficiency such a turbine should be provided with variable area nozzles. With this arrangement, it becomes possible to inject sufficient steam to produce stoichiometric combustion at the desired turbine inlet temperature. We shall refer to this cycle as the Water Injected Stoichiometric Combustion (WISC) gas turbine cycle. The various components described above can be added to any existing gas turbine engine to change it to the WISC configuration. The WISC engine offers significant economical advantages. The specific power output per pound of air for the WISC engine is more than five times that of the basic engine, the thermal efficiency is 75% higher than that of the basic engine. This produces a significant reduction in the initial investment in the plant as well as its operating expenses.


Sign in / Sign up

Export Citation Format

Share Document