Development of Ceramic Heat Exchangers for Indirect Fired Gas Turbines

Author(s):  
W. T. Bakker ◽  
D. Kotchick

Utilizing dirty fuels such as coal in gas turbine engines requires that heat input to the cycle working fluid occur through a heat exchanger. For high cycle efficiencies such a heat exchanger must operate in the 700–1400 KPA, 1100–1200°C (100–200 psi, 2000–2200°F) range. In this temperature range, ceramic heat exchangers are required. Ceramic heat exchangers that can operate in this regime have been under development for several years on a very modest scale. These programs are briefly reviewed. Major material issues are reviewed and the status of each is presented. Mechanical reliability and joining technology have been successfully demonstrated in short term tests. Long-term durability and the manufacturing technology to produce large scale components reproducibly remains to be demonstrated in the future.

Author(s):  
M. A. Monroe ◽  
A. H. Epstein ◽  
H. Kumakura ◽  
K. Isomura

The performance of a regenerated gas turbine generator in the 3–5 kW power range has been analyzed to understand why its measured efficiency was on the order of 6% rather than the 20% suggested by consideration of its components’ efficiencies as measured on rigs. This research suggests that this discrepancy can be primarily attributed to heat and fluid leaks not normally considered in the analysis of large gas turbine engines because they are not as important at large scale. In particular, fluid leaks among the components and heat leakage from the hot section into the compressor flow path contributed the largest debits to the engine performance. Such factors can become more important as the engine size is reduced. Other non-ideal effects reducing engine performance include temperature flow distortion at the entrance to both the compressor and turbine. A cycle calculation including all of the above effects matched measured engine data. It suggests that relatively simple changes such as thermal isolation and leak sealing can increase both power output and efficiency of this engine, over 225% in the latter case. The validity of this analysis was demonstrated on an engine in which partial thermal isolation and improved sealing resulted in a more than 40% increase in engine output power.


2020 ◽  
Vol 19 (3) ◽  
pp. 85-99
Author(s):  
H. Omar ◽  
V. S. Kuz'michev ◽  
A. Yu. Tkachenko

Continuous improvement of fuel efficiency of aircraft engines is the main global trend in modern engine construction. To date, aviation gas turbine engines have reached a high degree of thermodynamic and design-and technology perfection. One of the promising ways to further improve their fuel efficiency is the use of complex thermodynamic cycles with turbine exhaust heat regeneration and with intermediate cooling in the process of air compression. Until recently, the use of cycles with a recuperative heat exchanger and an intercooler in aircraft gas turbine engines was restrained by a significant increase in the mass of the power plant due to the installation of heat exchangers. Currently, it has become technologically possible to create compact, light, high-efficiency heat exchangers for use on aircraft without compromising their performance. An important target in the design of engines with heat recovery is to select the parameters of the working process that provide maximum efficiency of the aircraft system. The article focuses on the statement of the task of optimization and choice of rational parameters of the working process of a bypass three-shaft turbojet engine with an intercooler and a recuperative heat exchanger. On the basis of the developed method multi-criteria optimization was carried out by means of numerical simulations. The results of optimization of thermodynamic cycle parameters of a bypass three-shaft turbojet engine with an intercooler and a recuperative heat exchanger in the aircraft system according to such criteria as the total weight of the engine and fuel required for the flight, and the aircraft specific fuel consumption per ton - kilometer of the payload are presented. A passenger aircraft of the Airbus A310-300 type was selected. The developed mathematical model for calculating the mass of a compact heat exchanger, designed to solve optimization problems at the stage of conceptual design of the engine is presented. The developed methods and models are implemented in the ASTRA program. The possibility of improving the efficiency of turbofan engines due to the use of complex thermodynamic cycles is shown.


2020 ◽  
pp. 91-99
Author(s):  
Юрий Алексеевич Гусев

The development of gas turbine engines (GTE) is inextricably linked with an increase in their main characteristics. In this case, the parameters of the working fluid (in particular, the temperature of the gas flow) and the intensity of loads on the structural elements increase. The strength reliability of highly heated GTE elements is a factor that determines the life of the engine as a whole. The most common cases of damage to GTE elements are caused by static and vibration stresses and mainly relate to the blades of gas turbines operating at temperatures up to 1200оС. Vibration stresses of individual GTE parts can be determined only experimentally during GTE testing and fine-tuning. Their values are determined at individual points of the surfaces of parts by the values of directly measured deformations. At present, the main means for determining the vibration deformations of GTE elements are resistance strain gauges. In the process of testing, the information generated by the strain gages makes it possible to determine not only the dynamic deformation but also the static and dynamic temperature of the blade at the place where the strain gauge is installed. A technique is proposed for the parametric identification of a high-temperature tensoresistor (HTTR), based on the representation of the analyzed HTTR and affecting its state, as some, in the general case, non-linear measuring system. The structural and mathematical models of HTTR are considered, in which both temperature and strain are simultaneously measured using a single sensor element. An original technique is proposed for studying the reliability of the results of HTTR parametric identification. It is proved that the ellipsoidal character of the level lines of residual function, as well as the absence of an extremum region together with the point nature of the minimum, indicate the practical identifiability of the tensometric system. The proposed technique allows a quantitative and qualitative analysis of the effect of shunting on the accuracy of HTTR readings. This technique can also be used to create new types of insulating materials intended for HTTR insulator substrates. This method presents a possibility of the measurement deformation and temperature of element thermal using single platinum-based tensometer sensor.


Author(s):  
Ji Hwan Jeong ◽  
Lae Sung Kim ◽  
Jae Keun Lee ◽  
Man Yeong Ha ◽  
Kui Soon Kim ◽  
...  

Air transportation has been being expanded remarkably, and its growth is expected to continue in the coming decades. Environmental issues and airlines require gas turbine manufacturers to produce environmentally friendly gas-turbine engines with lower emissions and improved specific fuel consumption. These requirements can be met by incorporating heat exchangers into gas turbines for intercooling and recuperation. Relevant research in such areas as the design of a heat exchanger matrix, materials selection, and manufacturing technology and optimization has been carried out by a variety of researchers. These works are reviewed in this paper. The recent advance in technologies appears to herald the development of intercoolers and recuperators for civil aeroplane gas turbines. Based on results reported in previous studies, potential heat exchanger designs for an aero gas turbine recuperator, intercooler, and cooling-air cooler are suggested.


2002 ◽  
Vol 124 (3) ◽  
pp. 580-585 ◽  
Author(s):  
B. D. Thompson ◽  
B. Wainscott

From an operational availability stand point, the U.S. Navy is interested in the short term reliability of its ship based LM2500 gas turbine engines. That is the likelihood that an engine will operate successfully through a six-month deployment (usually 1500 to 2000 operational hours). From a maintenance and cost of ownership standpoint both the short-term and long-term reliability are of concern. Long-term reliability is a measure in time (in operating hours) between engine removals. To address these requirements U.S. Navy Fleet support maintenance activities employ a system of tests and evaluations to determine the likelihood that an LM2500 will meet its short and long-term goals. The lowest level inspection is the predeployment inspection, which attempts to identify primarily mechanical faults with the engine. Gas Turbine Bulletin inspections are used to determine if predefined wear out modes exists. Performance evaluations can be performed which determine the ability of the LM2500 and its control system to meet expected power requirements. Lube oil system data can be analyzed to determine if excessive leakage or excessive scavenge temperatures exist. Engine vibration characteristics can be reviewed to identify the source of both synchronous and nonsynchronous vibration and determine if corrective measures need to be taken. This paper will discuss how the lowest level inspections feed the more sophisticated analysis and how these inspections and evaluations work to provide a systematic method of insuring both short and long-term LM2500 reliability.


Author(s):  
G. A. Kool

Gas turbine engines are constructed of components with excellent strength and stiffness, a minimum density, a high temperature capability for long times, and at affordable cost. Metallic materials are the centrepiece in fulfilling these requirements. Future gas turbine engines will have to have higher thrust-to-weight ratios, better fuel efficiencies and still lower costs. This will require new and advanced lightweight materials with higher temperature capabilities. This paper discusses some of the presently applied materials in the fan, compressor and turbine sections of gas turbines, and reviews the material developments that are occurring and will be necessary for the near and long term futures.


2021 ◽  
Author(s):  
Nicholas C. Corbett ◽  
Michel Houde ◽  
Kathleen Bohan ◽  
Simon Batt

Abstract If existing gas turbine engines are to remain as the primary choice source of power for supplying short term peaking power capacity in an emergency, then they will need to be capable of directly using a alternative carbon neutral fuel supply. It is important that the fuel can be stored locally to ensure operation of the gas turbine can be provided without reliance upon supplies through distribution network infrastructure or stored hydrogen. Alternative carbon neutral fuels such as synthetic electro or biomass manufactured from hydrogen with nitrogen or CO2 to produce respectively; nitrofuel (Ammonia) or carbofuel (Methanol). Both fuels are renewable and compatible with existing carbon supply chain infrastructure as they can be similarly transported and stored as liquids with similar properties. Digital technologies can help accelerate the uptake of carbon neutral solutions by operators by assisting them to make greener choices, from the data and information presented to them, promoting the use of their assets demonstrating their contribution and responsibilities to managing the environment. Whilst progress in adopting digital technology has been slow, it is by linking the investment to decarbonization that could then be considered as a value adder rather than a regulatory requirement. The paper discusses the program of work to develop a bundle of digital services whilst decarbonizing aeroderivative gas turbine applications.


Author(s):  
Theodosios P. Korakianitis ◽  
David Gordon Wilson

To obtain equal thermal efficiencies in gas-turbine engines, designers have the freedom (if space and mass constraints are not limiting) of exchanging compressor pressure ratio for heat-exchanger effectiveness. Because heat exchangers can have lower losses than compressors, a high-effectiveness heat-exchanger cycle can have a much higher thermal efficiency (theoretically 55–60%) than is possible with unregenerated cycles. What has not been known up to now is the effect of design-point pressure ratio on the part-load efficiency of gas-turbine engines. The work reported here shows that, for similar turbomachinery technology, design-point and part-load efficiencies improve as the design-point pressure ratio decreases and the heat-exchanger thermal ratio increases.


1970 ◽  
Author(s):  
J. S. Siemietkowski

Marine gas turbines have been in the U.S. Navy since 1951. At present there are approximately 386 engines including both main propulsion and electric power generation in all types of craft. The maintenance of those engines is performed under a three-level concept, those being organizational, intermediate, overhaul. (Depot.) The lack of a large-scale commitment of gas turbines to the Fleet until mid-year 1969, prevented the establishment of a comprehensive maintenance program. For that reason, manufacturers recommendations rather than firm operating experience, are initially dictating the level of maintenance to be performed at specified intervals.


Author(s):  
R. N. Penny

In various companies throughout the world a first generation of production vehicle gas turbine engines are being engineered. A vital component involved is the regenerative heat exchanger. The relative merits of the rotary regenerative and static recuperative heat exchanger are compared. Thermal efficiency and competitive initial cost are the two vital issues involved in the design of small gas turbines for the commercial establishment of gas turbine vehicles. The selection of a material for the rotary regenerator is essentially related to resolving the two vital issues of future small gas turbines and is, therefore, analysed. The account of the pioneering work involved in engineering the glass ceramic and other non-metal rotary regenerators includes a complete failure analysis based on running experience with over 200 ceramic regenerators. The problems of sealing, supporting and manufacturing the glass ceramic rotary generator are discussed and future practical regenerative designs are outlined. Heat exchange theory applied to small gas turbines is also reviewed.


Sign in / Sign up

Export Citation Format

Share Document