scholarly journals Rotating Stall Measurements in the Vaneless Diffuser of a Radial Flow Compressor

1982 ◽  
Author(s):  
P. M. Ligrani ◽  
R. Van Den Braembussche ◽  
M. Roustan

Results from an experimental study of flow behavior at the inlet of a vaneless diffuser of a centrifugal compressor are presented. Hot-film measurements and measurement results from a crossed hot-wire probe are discussed for operating points having inlet flow coefficients ranging from 0.006 to 0.019 at different Reynolds numbers. Instantaneous, time-averaged, and phase-averaged absolute velocity and flow angle at the diffuser inlet are deduced from the hot-wire signals after correction for mean density variations. These results show how flow behavior varies in stable, rotating stall and surge regimes of compressor operation. The critical flow angle at the onset of rotating stall shows agreement with other measurements confirming the importance of diffuser inlet width and diffuser inlet flow angle on the onset of rotating stall in vaneless diffusers.

Author(s):  
Chuang Gao ◽  
Weiguang Huang ◽  
Haiqing Liu ◽  
Hongwu Zhang ◽  
Jundang Shi

This paper concerns with the numerical and experimental aspects of both steady and unsteady flow behavior in a centrifugal compressor with vaneless diffuser and downstream collector. Specifically, the appearance of flow instabilities i.e., rotating stall and surge is investigated in great detail. As the first step, the static performance of both stage and component was analyzed and possible root cause of system surge was put forward based on the classic stability theory. Then the unsteady pressure data was utilized to find rotating stall and surge in frequency domain which could be classified as mild surge and deep surge. With the circumferentially installed transducers at impeller inlet, backward travelling waves during stall ramp could be observed. The modes of stall waves could be clearly identified which is caused by impeller leading edge flow recirculation at Mu = 0.96. However, for the unstable flow at Mu = 1.08, the system instability seems to be caused by reversal flow in vaneless diffuser where the pressure oscillation was strongest. Thus steady numerical simulation were performed and validated with the experimental performance data. With the help of numerical analysis, the conjectures are proved.


1996 ◽  
Vol 118 (1) ◽  
pp. 123-127 ◽  
Author(s):  
Yoshinobu Tsujimoto ◽  
Yoshiki Yoshida ◽  
Yasumasa Mori

Rotating stalls in vaneless diffusers are studied from the viewpoint that they are basically two-dimensional inviscid flow instability under the boundary conditions of vanishing velocity disturbance at the diffuser inlet and of vanishing pressure disturbance at the diffuser outlet. The linear analysis in the present report shows that the critical flow angle and the propagation velocity are functions of only the diffuser radius ratio. It is shown that the present analysis can reproduce most of the general characteristics observed in experiments: critical flow angle, propagation velocity, velocity, and pressure disturbance fields. It is shown that the vanishing velocity disturbance at the diffuser inlet is caused by the nature of impellers as a “resistance” and an “inertial resistance,” which is generally strong enough to suppress the velocity disturbance at the diffuser inlet. This explains the general experimental observations that vaneless diffuser rotating stalls are not largely affected by the impeller.


2003 ◽  
Author(s):  
Sabri Deniz

This paper considers the performance and operating range of vaned diffusers for use in high performance centrifugal compressors. An experimental and numerical investigation is performed to determine the effects of inlet flow field conditions on pressure recovery and stall onset of different type vaned diffusers, such as discrete-passage and straight-channel diffusers. Diffuser inlet flow conditions examined include Mach number, flow angle, blockage, and axial flow non-uniformity. The investigation was carried out in a specially built test facility, designed to provide a controlled inlet flow field to the test diffusers. Unsteady pressure measurements showed the operating range of a compressor stage was limited by the onset of rotating stall, triggered by the loss of stability in the vaned diffuser, independent of the impeller operating point. For both diffusers investigated, loss of flow stability in the diffuser occurred at a critical value of the momentum-averaged flow angle into the diffuser. To provide additional information on diffuser flow development and to complement previous experimental work performed on straight-channel type diffuser, a computational investigation has been undertaken and important results are presented.


Author(s):  
J. Lepicovsky ◽  
E. P. Braunscheidel

Effective active control of rotating stall in axial compressors requires detailed understanding of flow instabilities associated with this compressor regime. Newly designed miniature high frequency response total and static pressure probes as well as commercial thermoanemometric probes are suitable tools for this task. However, during the rotating stall cycle the probes are subjected to flow direction changes that are far larger than the range of probe incidence acceptance, and therefore probe data without a proper correction would misrepresent unsteady variations of flow parameters. A methodology, based on ensemble averaging, is proposed to circumvent this problem. In this approach the ensemble averaged signals acquired for various probe setting angles are segmented, and only the sections for probe setting angles close to the actual flow angle are used for signal recombination. The methodology was verified by excellent agreement between velocity distributions obtained from pressure probe data, and data measured with thermoanemometric probes. Vector plots of unsteady flow behavior during the rotating stall regime indicate reversed flow within the rotating stall cell that spreads over to adjacent rotor blade channels. Results of this study confirmed that the NASA Low Speed Axial Compressor (LSAC) while in a rotating stall regime at rotor design speed exhibits one stall cell that rotates at a speed equal to 50.6% of the rotor shaft speed.


Author(s):  
Sabri Deniz ◽  
Edward M. Greitzer ◽  
Nicholas A. Cumpsty

This is Part 2 of an examination of influence of inlet flow conditions on the performance and operating range of centrifugal compressor vaned diffusers. The paper describes tests of straight-channel type diffuser, sometimes called a wedge-vane diffuser, and compares the results with those from the discrete-passage diffusers described in Part 1. Effects of diffuser inlet Mach number, flow angle, blockage, and axial flow non-uniformity on diffuser pressure recovery and operating range are addressed. The straight-channel diffuser investigated has 30 vanes and was designed for the same aerodynamic duty as the discrete-passage diffuser described in Part 1. The ranges of the overall pressure recovery coefficients were 0.65–0.78 for the straight-channel diffuser and 0.60–0.70 for the discrete-passage diffuser; the pressure recovery of the straight-channel diffuser was roughly 10% higher than that of the discrete-passage diffuser. Both types of the diffusers showed similar behavior regarding the dependence on diffuser inlet flow angle and the insensitivity of the performance to inlet flow field axial distortion and Mach number. The operating range of the straight-channel diffuser, as for the discrete-passage diffusers was limited by the onset of rotating stall at a fixed momentum-averaged flow angle into the diffuser, which was for the straight-channel diffuser, αcrit = 70° ±0.5°. The background, nomenclature and description of the facility and method are all given in Part 1.


Author(s):  
Umberto Desideri ◽  
Giampaolo Manfrida

This paper presents the results of an extensive set of measurements on a model of an exhaust diffuser for gas turbines. The diffuser is of the straight-wall annular-axial type, typically employed in small-to-medium size gas turbines. It features six high-solidity struts, which support, in the real machine, one of the shaft bearings and have piping for oil supply inside. The 35%-scale model has been tested on a special test stand developed at the University of Perugia, using the suction side of a centrifugal-flow industrial fan of suitable capacity. Inlet speed is around 80 m/s, allowing satisfactory accuracy for flow measurements and the similarity in terms of Reynolds number. The instrumentation, the movement of the measurement point and data acquisition system were designed for automatic running of the tests. Both pneumatic and hot-wire or hot-film probes can be used on the same facility. The same wind tunnel, previous a quick replacement of the model with a probe calibration test section, can be used for calibration of both pneumatic and hot-wire/hot-film probes. A three hole directional pneumatic probe was used for stationary flow measurements to determine the global performance parameters of the model and a split-film probe was used to determine the turbulence characteristics. For four test sections, contour plots are produced of average velocity components, flow angle and turbulence quantities as three components of the Reynolds stress tensor.


1978 ◽  
Author(s):  
Christian Fradin

Using pressure transducers and hot wire anemometers, the flow and pressure field in a subsonic centrifugal compressor is analyzed. Detailed pressure, velocity, and flow angle maps are given for the compressor inlet section, along the shroud, in the outlet section of the rotor, and also in the vaneless diffuser. These measurements show how flow heterogeneities are generated in the compressor and how they decay in the vaneless diffuser.


Sign in / Sign up

Export Citation Format

Share Document