scholarly journals Catalytic Combustion With Steam Injection

Author(s):  
David N. Anderson ◽  
Robert R. Tacina

This report describes an experimental study to determine: (1) if catalytic combustion performance is degraded when steam is injected into the air-stream, and (2) if steam-assisted fuel injection might eliminate the upstream burning problems which have occurred in past studies of catalytic combustion of residual fuels.

2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Avinash Kumar Agarwal ◽  
Nikhil Sharma ◽  
Akhilendra Pratap Singh ◽  
Vikram Kumar ◽  
Dev Prakash Satsangi ◽  
...  

Miscibility of methanol in mineral diesel and stability of methanol–diesel blends are the main obstacles faced in the utilization of methanol in compression ignition engines. In this experimental study, combustion, performance, emissions, and particulate characteristics of a single-cylinder engine fueled with MD10 (10% v/v methanol blended with 90% v/v mineral diesel) and MD15 (15% v/v methanol blended with 85% v/v mineral diesel) are compared with baseline mineral diesel using a fuel additive (1-dodecanol). The results indicated that methanol blending with mineral diesel resulted in superior combustion, performance, and emission characteristics compared with baseline mineral diesel. MD15 emitted lesser number of particulates and NOx emissions compared with MD10 and mineral diesel. This investigation demonstrated that methanol–diesel blends stabilized using suitable additives can resolve several issues of diesel engines, improve their thermal efficiency, and reduce NOx and particulate emissions simultaneously.


Author(s):  
Ala R. Qubbaj

In this study, a co-flow methane/air diffusion flame at Reynolds number of 6000 was numerically simulated. The co-flow air and fuel streams were diluted with Nitrogen in the range of 0% to 20%. The thermal and composition fields in the far-burner reaction zone (close to the exhaust) were computed, and the effects of diluent’s addition to the air stream (simulating FGR) and to the fuel stream (simulating FIR) were investigated. The results show that air-side dilution is very effective up to 5% diluent’s addition. For which, 95% and 65% drops in NO and CO emissions, respectively, along with a 16% increase in temperature, are predicted compared to the baseline case (0% dilution). However, beyond 5% dilution, no effect (reaction) has been predicted. On the other hand, the fuel-side dilution has shown an effect for all simulated diluent’s addition (i.e. 0%–20%). However, that effect is not systematic neither on temperature, CO or NO concentrations. For a similar 5% dilution to the fuel-side, a 14% increase in NO and a 97% decrease in CO are predicted, along with a 5.6% increase in temperature. The simulated results revealed that air-side dilution (simulating FGR) has a dramatic greater effectiveness in NO reduction, whereas, fuel-side dilution (simulating FIR) has a greater effectiveness in CO reduction. Besides, the results suggest an important role for Prompt-NO Fenimore mechanism.


Sign in / Sign up

Export Citation Format

Share Document