scholarly journals The LCF Behavior of Several Solid Solution Strengthened Alloys Used in Gas Turbine Engines

Author(s):  
S. K. Srivastava ◽  
D. L. Klarstrom

LCF tests were performed on production plate (16mm thick) materials of HAYNES® alloy No. 230, HASTELLOY® alloy X and INCONEL® alloy 617. The tests were conducted in air at 760, 871 and 982°C under the fully reversed strain controlled mode on materials in the annealed condition. The results showed that 230™ alloy possesses the best low cycle fatigue characteristics followed by alloy X and alloy 617 under all test conditions. The paper presents total strain range-life data, cyclic hardening/softening, and metallographic observations on selected failed samples. It is shown that oxidation plays a key role in fatigue-crack initiation in alloy 617.

Author(s):  
J. K. Wright ◽  
L. J. Carroll ◽  
J. A. Simpson ◽  
R. N. Wright

The low cycle fatigue behavior of Alloy 617 has been evaluated at 850 °C and 950 °C, the temperature range of particular interest for the intermediate heat exchanger on a proposed high-temperature gas-cooled nuclear reactor. Cycles to failure were measured as a function of total strain range and varying strain rate. Results of the current experiments compare well with previous work reported in the literature for a similar range of temperatures and strain rate. The combined data demonstrate a Coffin–Manson relationship, although the slope of the Coffin–Manson fit is close to −1 rather than the typically reported value of −0.5. At 850 °C and a strain rate of 10−3 /s Alloy 617 deforms by a plastic flow mechanism in low cycle fatigue and exhibits some cyclic hardening. At 950 °C for strain rates of 10−3–10−5 /s, Alloy 617 deforms by a solute drag creep mechanism during low cycle fatigue and does not show significant cyclic hardening or softening. At this temperature the strain rate has little influence on the cycles to failure for the strain ranges tested.


Author(s):  
P. G. Pritchard ◽  
L. Carroll ◽  
T. Hassan

Inconel Alloy 617 is a high temperature creep and corrosion resistant alloy and is a leading candidate for use in Intermediate Heat Exchangers (IHX) of the Next Generation Nuclear Plants (NGNP). The IHX of the NGNP is expected to experience operating temperatures in the range of 800°–950°C, which is in the creep regime of Alloy 617. A broad set of uniaxial, low-cycle fatigue, fatigue-creep, ratcheting, and ratcheting-creep experiments are conducted in order to study the fatigue and ratcheting responses, and their interactions with the creep response at high temperatures. A unified constitutive model developed at North Carolina State University is used to simulate these experimental responses. The model is developed based on the Chaboche viscoplastic model framework. It includes cyclic hardening/softening, strain rate dependence, strain range dependence, static and dynamic recovery modeling features. For simulation of the alloy 617 responses, new techniques of model parameter determination are developed for optimized simulations. This paper compares the experimental responses and model simulations for demonstrating the strengths and shortcomings of the model.


2019 ◽  
Vol 18 (3) ◽  
pp. 143-154
Author(s):  
O. V. Samsonova ◽  
K. V. Fetisov ◽  
I. V. Karpman ◽  
I. V. Burtseva

The failure of heavily loaded rotating parts of aviation gas turbine engines may bring about dangerous consequences. The life of such parts is limited with the use of computational and experimental methods. Computational life prediction methods that are used without carrying out life-cycle tests of engine parts or assemblies should be substantiated experimentally. The best option for verifying the computational methods is to use the results of cyclic tests of model disks. These tests make it possible to reproduce loading conditions and surface conditions that correspond to those of real disks, and the data on the load history and material properties make it possible to simulate stress-strain behavior of disks under test conditions by calculation. This paper shows the process of planning such tests. It is assumed that the tests will be carried out in two stages - before and after the initiation of a low-cycle fatigue crack. A number of criteria are formulated that the geometry of model disks and their loading conditions are to satisfy. Based on these criteria, model disks were designed and the conditions for their testing were selected.


Author(s):  
Eric P. Bouillon ◽  
Patrick C. Spriet ◽  
Georges Habarou ◽  
Thibault Arnold ◽  
Greg C. Ojard ◽  
...  

Advanced materials are targeting durability improvement in gas turbine engines. One general area of concern for durability is in the hot section components of the engine. Ceramic matrix composites offer improvements in durability at elevated temperatures with a corresponding reduction in weight for nozzles of gas turbine engines. Building on past material efforts, ceramic matrix composites using a carbon and a SiC fiber with a self-sealing matrix have been developed for gas turbine applications. Prior to ground engine testing, a reduced test matrix was undertaken to aggressively test the material in a long-term hold cycle at elevated temperatures and environments. This tensile low cycle fatigue testing was done in air and a 90% steam environment. After completion of the aggressive testing effort, six nozzle seals were fabricated and installed in an F100-PW-229 engine for accelerated mission testing. The C fiber CMC and the SiC Fiber CMC were respectively tested to 600 and 1000 hours in accelerated conditions without damage. Engine testing is continuing to gain additional time and insight with the objective of pursuing the next phase of field service evaluation. Mechanical testing and post-test characterization results of this testing will be presented. The results of the engine testing will be shown and overall conclusions drawn.


2004 ◽  
Vol 449-452 ◽  
pp. 561-564 ◽  
Author(s):  
Seong Moon Seo ◽  
In Sup Kim ◽  
Chang Yong Jo

Low cycle fatigue (LCF) behavior of coarse and fine grained superalloy CM247LC at 760°C has been investigated. Both coarse and fine grained CM247LC showed similar cyclic stress response, however, the fine grained CM247LC specimen exhibited relatively uniform and superior fatigue properties to the coarse grained one. It was found that fatigue crack initiation of the alloy was keen to the applied strain range. Fatigue crack initiated at the surface of the specimen with high strain range (∆εt≥( 0.7%) while the initiation site moved to the internal defects at low strain range (∆εt≤0.6%).


1974 ◽  
Vol 188 (1) ◽  
pp. 657-671 ◽  
Author(s):  
M. W. Parsons ◽  
K. J. Pascoe

The low-cycle fatigue behaviour of a ferritic and an austenitic steel have been studied under various conditions of reversed biaxial strain. These cyclically softened and hardened respectively. In all cases, relationships of the form were found between total strain range Δε t and life Nf for lives in the range 102−105 cycles, with an abrupt change of β at intermediate lives. Variation of state of strain affected both β and κ. Various theories for the correlation of fatigue behaviour under multi-axial loading have been reviewed and compared with these results. None was found to account adequately for the effect of straining régime with the materials tested.


2011 ◽  
Vol 80-81 ◽  
pp. 788-791
Author(s):  
Wei Wei Yu ◽  
Fei Xue ◽  
Xin Ming Meng ◽  
Lei Lin

To investigate the property of a new type of Zircaloy material, a low cycle fatigue (LCF) test has been performed at room temperature (RT) and 375°C. Results show that the new alloy generally displays cyclic hardening followed by a continuous softening behavior. Fatigue lifetime curves as a function of strain range imply that the new alloy has a nearly same lifetime than that of Zr-4 at RT, and superior than that at 375°C.


Author(s):  
L. M. Pike ◽  
S. K. Srivastava

HAYNES® 242® alloy, based primarily on the Ni-25Mo-8Cr system, derives its low thermal expansion characteristics from its composition and its high strength concomitant with high ductility from a long-range ordering reaction upon an aging heat treatment. This combination has enabled the alloy continually to find a challenging range of applications in the aerospace industry at up to 1300°F (704°C). These include seal rings, containment rings, duct segments, casings, rocket nozzles, etc. In conjunction with the creep strength and environmental resistance, the low cycle fatigue (LCF) behavior is an important material property affecting the service life of 242 alloy components. The low cycle fatigue behavior of 242 alloy was studied under fully reversed strain-controlled mode at 800°F (427°C), 1000°F (538°C), 1200°F (649°C) and 1400°F (760°C) using a triangular wave form with a frequency of 0.33 Hz. Results are presented in terms of cycles to crack initiation and failure. The magnitudes of fatigue lives at total strain range ≤ 0.7% at 800, 1000 and 1200°F are significantly greater than those of solid solution strengthened alloys. Additionally, stress-controlled LCF tests were performed at 1200°F (649°C) on 242 alloy as well as 909 alloy (for comparison). The paper will discuss the results of these two test programs.


2005 ◽  
Vol 127 (4) ◽  
pp. 512-522 ◽  
Author(s):  
Qian Zhang ◽  
Abhijit Dasgupta ◽  
Peter Haswell

This study is motivated by the urgent need in the electronics industry for mechanical properties and durability of Pb-free solders because the use of Pb will be banned in the EU by July 1, 2006. The isothermal mechanical durability of three NEMI recommended Pb-free solders, 95.5Sn-3.9Ag-0.6Cu, 96.5Sn-3.5Ag, and 99.3Sn-0.7Cu, is tested on the thermo-mechanical-microscale (TMM) setup under two test conditions: room temperature and relatively high strain rate, and high temperature and low strain rate. The test data are presented in a power law relationship between three selected damage metrics (total strain range, inelastic strain range, and cyclic work density) to 50% load drop. The obtained mechanical durability models of three Pb-free solders are compared with those of the eutectic 63Sn-37Pb solder at the two selected test conditions and at the same homologous temperature of 0.75. The results of this study can be used for virtual qualification of Pb-free electronics during design and development of electronics under mechanical loading.


Sign in / Sign up

Export Citation Format

Share Document