scholarly journals Low Emissions Combustor Development for an Industrial Gas Turbine to Utilise LCV Fuel Gas

Author(s):  
G. J. Kelsall ◽  
M. A. Smith ◽  
M. F. Cannon

Advanced coal based power generation systems such as the British Coal Topping Cycle offer the potential for high efficiency electricity generation with minimum environmental impact. An important component of the Topping Cycle programme is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at a turbine inlet temperature of 1260°C (2300 F), with minimum pollutant emissions, is a key R&D issue. A phased combustor development programme is underway burning low calorific value fuel gas (3.6–4.1 MJ/m3) with low emissions, particularly NOx derived from fuel bound nitrogen. The first phase of the combustor development programme has now been completed using a generic tubo-annular, prototype combustor design. Tests were carried out at combustor loading and mach numbers considerably greater than the initial design values. Combustor performance at these conditions was encouraging. The second phase of the programme is currently in progress. This will assess, initially, an improved variant of the prototype combustor operating at conditions selected to represent a particular medium sized industrial gas turbine. This combustor will also be capable of operating using natural gas as an auxiliary fuel, to suit the start-up procedure for the Topping Cycle. The paper presents the Phase 1 test programme results for the prototype combustor. Design of the modified combustor for Phase 2 of the development programme is discussed, together with preliminary combustion performance results.

1994 ◽  
Vol 116 (3) ◽  
pp. 559-566 ◽  
Author(s):  
G. J. Kelsall ◽  
M. A. Smith ◽  
M. F. Cannon

Advanced coal-based power generation systems such as the British Coal Topping Cycle offer the potential for high-efficiency electricity generation with minimum environmental impact. An important component of the Topping Cycle program is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at a turbine inlet temperature of 1260°C (2300°F), with minimum pollutant emissions, is a key R&D issue. A phased combustor development program is underway burning low calorific value fuel gas (3.6-4.1 MJ/m3) with low emissions, particularly NOx derived from fuel-bound nitrogen. The first phase of the combustor development program has now been completed using a generic tubo-annular, prototype combustor design. Tests were carried out at combustor loading and Mach numbers considerably greater than the initial design values. Combustor performance at these conditions was encouraging. The second phase of the program is currently in progress. This will assess, initially, an improved variant of the prototype combustor operating at conditions selected to represent a particular medium sized industrial gas turbine. This combustor will also be capable of operating using natural gas as an auxiliary fuel, to suit the start-up procedure for the Topping Cycle. The paper presents the Phase 1 test program results for the prototype combustor. Design of the modified combustor for Phase 2 of the development program is discussed, together with preliminary combustion performance results.


Author(s):  
G. J. Kelsall ◽  
M. A. Smith ◽  
H. Todd ◽  
M. J. Burrows

Advanced coal based power generation systems such as the British Coal Topping Cycle offer the potential for high efficiency electricity generation with minimum environmental impact. An important component of the Topping Cycle programme is the development of a gas turbine combustion system to burn low calorific value (3.5–4.0 MJ/m3 wet gross) coal derived fuel gas, at a turbine inlet temperature of 1260°C, with minimum pollutant emissions. The paper gives an overview of the British Coal approach to the provision of a gas turbine combustion system for the British Coal Topping Cycle, which includes both experimental and modelling aspects. The first phase of this programme is described, including the design and operation of a low-NOx turbine combustor, operating at an outlet temperature of 1360°C and burning a synthetic low calorific value (LCV) fuel gas, containing 0 to 1000 ppmv of ammonia. Test results up to a pressure of 8 bar are presented and the requirements for further combustor development outlined.


Author(s):  
Douglas R. Constant ◽  
D. Mark Bevan ◽  
Michael F. Cannon ◽  
Gregory J. Kelsall

Advanced coal based power generation systems, such as the Air Blown Gasification Cycle (ABGC), offer the potential for high efficiency, electricity generation with minimum environmental impact. An important component of the ABGC development is the gas turbine combustion system. It must bum low calorific value (LCV) coal derived fuel gas, at high turbine inlet temperatures with minimum pollutant emissions. A phased development programme has been completed burning LCV fuel gas (3.6–4.1 MJ/m3) with low emissions, particularly NOx derived from fuel bound nitrogen. Performance tests were carried out on a generic tubo-annular, prototype combustor, at Mach numbers generally lower than those typical to engine applications, with encouraging results. Five design variants, operating at conditions selected to represent a particular medium sized industrial gas turbine each returned an improvement in combustor performance. A further five variants were investigated to establish which design characteristics and operating parameters most affected NOx emissions.


Author(s):  
R. Chacartegui ◽  
D. Sa´nchez ◽  
F. Jime´nez-Espadafor ◽  
A. Mun˜oz ◽  
T. Sa´nchez

The development of high efficiency solar power plants based on gas turbine technology presents two problems, both of them directly associated with the solar power plant receiver design and the power plant size: lower turbine intake temperature and higher pressure drops in heat exchangers than in a conventional gas turbine. To partially solve these problems, different configurations of combined cycles composed of a closed cycle carbon dioxide gas turbine as topping cycle have been analyzed. The main advantage of the Brayton carbon dioxide cycle is its high net shaft work to expansion work ratio, in the range of 0.7–0.85 at supercritical compressor intake pressures, which is very close to that of the Rankine cycle. This feature will reduce the negative effects of pressure drops and will be also very interesting for cycles with moderate turbine inlet temperature (800–1000 K). Intercooling and reheat options are also considered. Furthermore, different working fluids have been analyzed for the bottoming cycle, seeking the best performance of the combined cycle in the ranges of temperatures considered.


Author(s):  
Isashi Takehara ◽  
Tetsuo Tatsumi ◽  
Yoshihiro Ichikawa

The Japanese Ceramic Gas Turbine (CGT) research and development program (FY1988–1998) as a part of the New Sunshine Project funded by the Ministry of International Trade and Industry (MITI) was completed in March 1999. Kawasaki Heavy Industries, Ltd. (KM) participated in this research program from the beginning and developed a twin-shaft CGT with a recuperator, designated as the “CGT302”. The purposes of this program were: 1) to achieve both a high efficiency and low pollutant emissions level using ceramic components, 2) to prove a multi-fuel capability to be used in co-generation systems, and 3) to demonstrate long-term operation. The targets of this program were: i) to achieve a thermal efficiency of over 42% at a turbine inlet temperature (TIT) of 1350°C, ii) to keep its emissions within the regulated value by the law, and iii) to demonstrate continuous operation for more than a thousand hours at 1200°C TIT. The CGT302 has successfully attained its targets. In March 1999 the CGT302 recorded 42.1% thermal efficiency, and 31.7 ppm NOx emissions (O2 = 16%) at 1350°C TIT. At this time it had also accumulated over two thousand hours operation at 1200°C. In this paper, we summarize the development of the CGT302.


2002 ◽  
Vol 124 (3) ◽  
pp. 627-635 ◽  
Author(s):  
I. Takehara ◽  
T. Tatsumi ◽  
Y. Ichikawa

The Japanese ceramic gas turbine (CGT) research and development program (FY1988-1998) as a part of the New Sunshine Project funded by the Ministry of International Trade and Industry (MITI) was completed in March 1999. Kawasaki Heavy Industries, Ltd. (KHI) participated in this research program from the beginning and developed a twin-shaft CGT with a recuperator, designated as the “CGT302.” The purposes of this program were (1) to achieve both a high efficiency and low pollutant emissions level using ceramic components, (2) to prove a multifuel capability to be used in cogeneration systems, and (3) to demonstrate long-term operation. The targets of this program were (i) to achieve a thermal efficiency of over 42 percent at a turbine inlet temperature (TIT) of 1350°C, (ii) to keep its emissions within the regulated value by the law, and (iii) to demonstrate continuous operation for more than a thousand hours at 1200°C TIT. The CGT302 has successfully attained its targets. In March 1999 the CGT302 recorded 42.1 percent thermal efficiency, and 31.7 ppm NOx emissions (O2=16 percent) at 1350°C TIT. At this time it had also accumulated over 2000 hours operation at 1200°C. In this paper, we summarize the development of the CGT302.


Author(s):  
L. H. Cowell ◽  
R. T. LeCren

A full-size combustor for a coal-fueled industrial gas turbine engine has been tested to evaluate combustion performance prior to integration with an industrial gas turbine. The design is based on extensive work completed through one-tenth scale combustion tests. Testing of the combustion hardware is completed with a high pressure air supply in a combustion test facility at the Caterpillar Technical Center. The combustor is a two-staged, rich-lean design. Fuel and air are introduced in the primary combustion zone where the combustion process is initiated. The primary zone operates in a slagging mode inertially removing coal ash from the gas stream. Four injectors designed for coal-water mixture (CWM) atomization are used to introduce the fuel and primary air. In the secondary combustion zone additional air is injected to complete the combustion process at fuel-lean conditions. The secondary zone also serves to reduce the gas temperatures exiting the combustor. The combustor has operated at test pressures of 7 bars with 600K inlet temperature. Tests have been completed to set the air flow split and to map the performance of the combustor as characterized by pollutant emissions, coal ash separation, and temperature profile. Test results with a comparison to subscale test results are discussed. The test results have indicated that the combustor operates at combustion efficiencies above 98% and with pollutant emissions below design goals.


Author(s):  
George Rocha ◽  
Rainer Kurz

The two-shaft Titan 130 industrial gas turbine was introduced into commercial service in 1998 and has gained field experience in mechanical-drive and compressor-set applications. A single-shaft configuration is also available for electrical power generation applications. The 14-MW class two-shaft engine is nominally rated at 19,500 hp with a simple-cycle efficiency of more than 35% at ISO operating conditions. It is available with two combustor options: a dry, low-pollutant emissions combustion system featuring Solar’s proven SoLoNOx technology or a diffusion-flame type combustor adapted from Solar’s proven Mars gas turbine. The Titan 130 gas turbine design is an aerodynamic scale of the existing Taurus 70 product. The unit features a modified Mars air compressor and turbine section components directly scaled from the Taurus 70, resulting in a low-risk product design well-suited for industrial service applications. A major element of the development strategy included an extended field evaluation trial in actual operating conditions to demonstrate overall product durability. The first Titan 130 mechanical-drive package was placed into service at a natural gas pipeline compressor station and successfully completed a planned 8000-hour field evaluation program. Extensive inspection and operating data have been evaluated and the unit continues to operate in normal commercial service. A mechanical-drive package requires the successful marriage between the driver and the driven equipment. Most applications require a combination of high efficiency and high performance flexibility. Emphasis was placed on providing excellent gas compressor coverage for this product. The successful application of such a compression system is discussed and supported by site test data. This paper provides details of the Titan 130 field evaluation program, design enhancements and typical compressor set application performance characteristics.


Author(s):  
Matti Malkamäki ◽  
Ahti Jaatinen-Värri ◽  
Antti Uusitalo ◽  
Aki Grönman ◽  
Juha Honkatukia ◽  
...  

Decentralized electricity and heat production is a rising trend in small-scale industry. There is a tendency towards more distributed power generation. The decentralized power generation is also pushed forward by the policymakers. Reciprocating engines and gas turbines have an essential role in the global decentralized energy markets and improvements in their electrical efficiency have a substantial impact from the environmental and economic viewpoints. This paper introduces an intercooled and recuperated three stage, three-shaft gas turbine concept in 850 kW electric output range. The gas turbine is optimized for a realistic combination of the turbomachinery efficiencies, the turbine inlet temperature, the compressor specific speeds, the recuperation rate and the pressure ratio. The new gas turbine design is a natural development of the earlier two-spool gas turbine construction and it competes with the efficiencies achieved both with similar size reciprocating engines and large industrial gas turbines used in heat and power generation all over the world and manufactured in large production series. This paper presents a small-scale gas turbine process, which has a simulated electrical efficiency of 48% as well as thermal efficiency of 51% and can compete with reciprocating engines in terms of electrical efficiency at nominal and partial load conditions.


Sign in / Sign up

Export Citation Format

Share Document