scholarly journals Development of Centrifugal Compressor for 100 kW Automotive Ceramic Gas Turbine

Author(s):  
Hiroshi Uchida ◽  
Mutsuo Shiraki ◽  
Akinobu Bessho ◽  
Yoichi Yagi

In Japan, a program of research and development of a 100 kW automotive ceramic gas turbine (CGT) has been carried out in the Petroleum Energy Center with active cooperation of petroleum, automobile and ceramics industries as well as other related industries. As a part of this research and development program, we have studied and developed a centrifugal compressor with variable inlet guide vanes for CGT engines. There has been a strong demand for a compressor with a high efficiency and a wide flow range. The compressor performance goals are an adiabatic efficiency of 81% and a surge margin of 8% under maximum power operating conditions. This paper describes the methods for designing impellers, diffusers and variable inlet guide vanes, and presents the results of compressor performance tests. The test results reveal that the surge margin and compressor efficiency at partial load are improved by using inlet guide vanes.

Author(s):  
Ronald P. Porter

A high efficiency, low cost gas compressor is under development. Design has been completed and fabrication is in process. The manufacturer’s background in centrifugal compressor design and current methodology is discussed along with product definition. Assembly and test of the first unit is planned for summer 1996. The design features a single-stage overhung centrifugal compressor, variable inlet guide vanes, and dry gas seals.


Author(s):  
Levi André B. Vigdal ◽  
Lars E. Bakken

The introduction of variable inlet guide vanes (VIGVs) upfront of a compressor stage affects performance and permits tuning for off-design conditions. This is of great interest for emerging technology related to subsea compression. Unprocessed gas from the wellhead will contain liquid condensate, which affects the operational condition of the compressor. To investigate the effect of guide vanes on volume flow and pressure ratio in a wet gas compressor, VIGVs are implemented upfront of a centrifugal compressor stage to control the inlet flow direction. The guide vane geometry and test rig setup have previous been presented. This paper documents how changing the VIGV setting affects compressor performance under dry and wet operating conditions. The reduced performance effect and operating range at increased liquid content are of specific interest. Also documented is the change in the VIGV effect relative to the setting angle.


1991 ◽  
Vol 113 (4) ◽  
pp. 696-702 ◽  
Author(s):  
C. Rodgers

This paper describes the results of compressor rig testing with a moderately high specific speed, high inducer Mack number, single-stage centrifugal compressor, with a vaned diffuser, and adjustable inlet guide vanes (IGVs). The results showed that the high-speed surge margin was considerably extended by the regulation of the IGVs, even though the vaned diffuser was apparently operating stalled. Simplified one-dimensional analysis of the impeller and diffuser performances indicated that at inducer tip Mach numbers approaching and exceeding unity, the high-speed surge line was triggered by inducer stall. Also, IGV regulation increased impeller stability. This permitted the diffuser to operate stalled, providing the net compression system stability remained on a negative slope.


Author(s):  
Ahmed Abdelwahab

The performance of the PSA (Pressure Swing Adsorption) or VPSA (Vacuum Pressure Swing Adsorption) cycle in an oxygen air separation process is significantly dependent upon the working capacity and working selectivity afforded by the adsorbent. These parameters in turn are dependent on the adsorption pressures employed in the VPSA cycle. Despite the increasing demand for increased capacity and pressure in VPSA air separation plants, they have conventionally used rotary-type positive displacement blowers as the process machinery. These blowers, while most adapted to the oscillating nature of the pressure swing cycles, have increasing high cost per capacity at higher capacities and become very inefficient as the cycle pressures are increased. A new low cost and more efficient process machinery solution is introduced through the use of a moderate speed direct coupled integrated feed and vacuum centrifugal compressor with inlet guide vanes to achieve high efficiencies during the varying operating conditions of the VPSA cycle. In this paper the fundamentals of a VPSA cycle as it applies to a centrifugal compressor operation is presented. A model of the design and predicted performance of a feed and vacuum VPSA centrifugal compressor is presented. A discussion of the proposed design in comparison to a conventional blower is presented. The model and predictions indeed show the superiority of the new design concept to the conventional process machinery equipment in terms of power savings and capacity increase. This new design however requires a feedback control system for the inlet guide vanes.


Author(s):  
Jianjiao Jin ◽  
Jianfeng Pan ◽  
Zhigang Lu ◽  
Qingrui Wu ◽  
Lizhong Xu

Maintaining required performance and rated power output of proton exchange membrane fuel cells while reducing fuel consumption demands and improving efficiencies at the largest parasitic work loss contributor, namely the air compressor. In this paper, we built a high-efficiency one-dimensional match model of centrifugal compressor for proton exchange membrane fuel cells first, which was based on the fuel cell air supply system and the optimal trim factor. And then a variable map width enhancement slot design adjusted by a closed ring was first introduced to extend the surge margin and keep high efficiency. Finally, the compressor with a variable map width enhancement slot was validated at a compressor performance rig and a fuel cell simulation system. The results from compressor performance test rig indicate that the compressor peak efficiency is as high as 77% and the surge margin is enhanced by about 28.1∼ 42.7 %. The simulation results of the fuel cell system indicate the maximum power consumption of the compressor and the H2 consumption of comprehensive adapted world transient vehicle cycle are reduced by nearly 1.6 kW and 4.86%, respectively, in comparison with the baseline screw compressor.


Author(s):  
ChiYong Park ◽  
YoungSeok Choi ◽  
KyoungYong Lee ◽  
JoonYong Yoon

This paper presents a numerical study of casing treatments on a centrifugal compressor in order to improve stability and the surge margin. High efficiency, a high pressure ratio, and a wide operating range are required for a high-performance centrifugal compressor. A ring groove casing treatment is effective for flow range enhancement in centrifugal compressors. In the present study, compressor performance was analyzed according to the ring groove location and the results were compared with the case without a ring groove. The effect of guide vanes in the ring groove was also investigated. Four more variants of grooves were modeled and simulated using computational fluid dynamics (CFD) in order to optimize the groove location. The numerical analysis was carried out using a commercial code ANSYS-CFX program. The simulation results showed that the ring groove increased the operating range of the compressor. The ring groove with guide vanes improved both the compressor’s performance at low flow rates and improved the compressor’s surge margin.


Author(s):  
Armin Zemp ◽  
Reza S. Abhari ◽  
Beat Ribi

Forming the first part of a two-part paper, the quantification of the resonant response levels and the damping quantities for a centrifugal compressor impeller with variable inlet guide vanes under engine representative operating conditions is detailed in this work. The motivation for the investigation is the lack of experimental data that are needed to improve and validate computational tools used during the design phase. Measurements were performed during resonant blade vibrations with the inlet pressure, the inlet guide vane angle and the operating point as the varying parameters. The flow non-uniformity introduced into the inlet flow field was measured with an aerodynamic probe. These measurements showed an increase in flow distortion for increased guide vane angles. The response amplitudes were acquired with dynamic strain gauges. A curve-fit method was applied to estimate the critical damping ratios. The results showed a linear correlation of the aerodynamic damping with the inlet pressure. The mode dependent material damping was therefore derived using a linear extrapolation to vacuum conditions of the inlet pressure dependent overall damping. The resonant blade dynamics could be captured with a single degree of freedom model. The aerodynamic damping and the maximum strain response were found to significantly depend on the inlet guide vane angle setting and on the throttle setting of the compressor.


Author(s):  
Minoru Ishino ◽  
Yuji Iwakiri ◽  
Akinobu Bessho ◽  
Hiroshi Uchida

Variable inlet guide vanes (VIGVs) have been developed for a small centrifugal compressor of automobile turbocharger. The effects of pre-whirl flow generated by VIGVs on compressor performance have been studied experimentally. Furthermore, the flow condition in impeller passage of the compressor with VIGVs has been compared to that of the compressor without VIGVs by using three-dimensional flow analysis. The results of experimental study have shown that pre-whirl flow is advantageous to the efficiency and surge characteristics of compressor. A weak fluid oscillation, which usually occurs in the region of high pressure-ratio and high mass flow rates, has been controlled by using VIGVs. The results of calculation of the viscous compressible flow have shown that the pre-whirl generated by VIGVs is effective in decreasing the area of the reverse flow which occurs at shroud suction side and smoothing the flow distribution between shroud and hub at the impeller exit.


Author(s):  
Qifeng Ni ◽  
Anping Hou ◽  
Ye Tian ◽  
Quanyong Xu ◽  
Enlai Liu

A single stage centrifugal compressor has been designed for industrial use. Adjustable Inlet Guide Vanes (IGVs) and vaned diffusers were equipped to meet the requirement of large flow range, high efficiency and constant shaft speed. Both numerical calculations and experiments were implemented to get the performance of this new designed centrifugal compressor. The influence of adjustable IGVs and vaned diffusers on the stage performance characteristic was examined by numerical method. It is shown that numerical simulation results are close to the measured results and predict the stall limit well. The new centrifugal compressor has a comparatively high efficiency and wide operating range. Moreover, unilateral adjustment of either IGV pre-whirl angle or vaned diffuser stagger angle enables an increase in stable operating range opposed to the stage configuration with no adjustment. The combination of simultaneous adjustment of the IGVs and diffuser vanes can not only provide even wider flow range but also keep high efficiency. The identical working point can be operated at different IGV pre-whirl angles and diffuser stagger angles, hence the optimum adjustment schedule for the specified operating line was dug up to obtain an optimum efficiency. Detailed flow field analysis was performed to validated the suitable simultaneous adjustment combinations.


2017 ◽  
Vol 17 (17) ◽  
pp. 1-10
Author(s):  
Mostafa Samy ◽  
Mohamed Metwally ◽  
Wael Elmayyah ◽  
Ibrahem Elsherif

Sign in / Sign up

Export Citation Format

Share Document