Experimental Investigation of Forced Response Impeller Blade Vibration in a Centrifugal Compressor With Variable Inlet Guide Vanes: Part 1—Blade Damping

Author(s):  
Armin Zemp ◽  
Reza S. Abhari ◽  
Beat Ribi

Forming the first part of a two-part paper, the quantification of the resonant response levels and the damping quantities for a centrifugal compressor impeller with variable inlet guide vanes under engine representative operating conditions is detailed in this work. The motivation for the investigation is the lack of experimental data that are needed to improve and validate computational tools used during the design phase. Measurements were performed during resonant blade vibrations with the inlet pressure, the inlet guide vane angle and the operating point as the varying parameters. The flow non-uniformity introduced into the inlet flow field was measured with an aerodynamic probe. These measurements showed an increase in flow distortion for increased guide vane angles. The response amplitudes were acquired with dynamic strain gauges. A curve-fit method was applied to estimate the critical damping ratios. The results showed a linear correlation of the aerodynamic damping with the inlet pressure. The mode dependent material damping was therefore derived using a linear extrapolation to vacuum conditions of the inlet pressure dependent overall damping. The resonant blade dynamics could be captured with a single degree of freedom model. The aerodynamic damping and the maximum strain response were found to significantly depend on the inlet guide vane angle setting and on the throttle setting of the compressor.

Author(s):  
Levi André B. Vigdal ◽  
Lars E. Bakken

The introduction of variable inlet guide vanes (VIGVs) upfront of a compressor stage affects performance and permits tuning for off-design conditions. This is of great interest for emerging technology related to subsea compression. Unprocessed gas from the wellhead will contain liquid condensate, which affects the operational condition of the compressor. To investigate the effect of guide vanes on volume flow and pressure ratio in a wet gas compressor, VIGVs are implemented upfront of a centrifugal compressor stage to control the inlet flow direction. The guide vane geometry and test rig setup have previous been presented. This paper documents how changing the VIGV setting affects compressor performance under dry and wet operating conditions. The reduced performance effect and operating range at increased liquid content are of specific interest. Also documented is the change in the VIGV effect relative to the setting angle.


Author(s):  
Armin Zemp ◽  
Reza S. Abhari ◽  
Matthias Schleer

As the second part of a two-part paper, this paper presents an experimental investigation of forced response impeller blade vibrations in a centrifugal compressor stage caused by variable inlet guide vanes. Although it is common practice to experimentally test the forced response blade vibration behavior of new impeller designs in terms of strain gauge or tip-timing measurements, the impact of the unsteady blade pressure distribution acting as an unsteady load on the blade surfaces is still not known. A centrifugal compressor impeller was therefore instrumented with dynamic strain gauges and fast-response pressure transducers to measure the forcing of the impeller blades for different compressor operating points and various inlet guide vane angle settings. The results showed a decrease in the excitation amplitudes for reduced mass flow rates of the compressor stage. The inlet guide vane angle setting affected the convection speed of the distortion pattern along the blade surface. An increase in the negative inlet guide vane angle caused higher excitation amplitudes especially in the inducer part of the blade. However, the largest negative inlet guide vane setting caused the smallest excitation amplitudes as this setup introduced the smallest amount of inlet distortion to the inlet flow field. A series of unidirectional fluid structure interaction calculations was performed to show the limitations and requirements of today’s numerical tools.


Author(s):  
Michael M. Cui

A suction elbow and inlet guide vanes (IGVs) are typical upstream components in the front of the first-stage impeller in a centrifugal compressor. Since the flow field in the front of the impeller is subsonic, the flow motion induced by the rotating impeller interacts with the elbow and IGVs. These interactions induce turbulent unsteady flows inside compressors. The resulted unsteadiness affects efficiency, vibration, and noise generation of the compressor. To understand the mechanism controlling the interactions between up-steam components and to optimize the compressor design for better efficiency and reliability, the turbulent unsteady flow inside the first-stage of the compressor was simulated. The model includes the suction elbow, inlet guide vane housing, and first-stage impeller. HFC 134a was used as the working fluid. The thermodynamic and transport properties of the refrigerant gas were modeled by the Martin-Hou equation of state and power laws, respectively. The three-dimensional unsteady flow field was numerically simulated. The overall performance parameters were obtained by integrating the field quantities. The force, torque, and the arm of moments acting on the IGVs are then calculated. The results can be used to improve centrifugal compressor design to achieve higher efficiency and improve reliability.


Author(s):  
Ashlie B. Flegel

Abstract A Honeywell Uncertified Research Engine was exposed to various ice crystal conditions in the NASA Glenn Propulsion Systems Laboratory. Simulations using NASA’s 1D Icing Risk Analysis tool were used to determine potential inlet conditions that could lead to ice crystal accretion along the inlet of the core flowpath and into the high pressure compressor. These conditions were simulated in the facility to develop baseline conditions. Parameters were then varied to move or change accretion characteristics. Data were acquired at altitudes varying from 5 kft to 45 kft, at nominal ice particle Median Volumetric Diameters from 20 μm to 100 μm, and total water contents of 1 g/m3 to 12 g/m3. Engine and flight parameters such as fan speed, Mach number, and inlet temperature were also varied. The engine was instrumented with total temperature and pressure probes. Static pressure taps were installed at the leading edge of the fan stator, front frame hub, the shroud of the inlet guide vane, and first two rotors. Metal temperatures were acquired for the inlet guide vane and vane stators 1–2. In-situ measurements of the particle size distribution were acquired three meters upstream of the engine forward fan flange and one meter downstream of the fan in the bypass in order to study particle break-up behavior. Cameras were installed in the engine to capture ice accretions at the leading edge of the fan stator, splitter lip, and inlet guide vane. Additional measurements acquired but not discussed in this paper include: high speed pressure transducers installed at the trailing edge of the first stage rotor and light extinction probes used to acquire particle concentrations at the fan exit stator plane and at the inlet to the core and bypass. The goal of this study was to understand the key parameters of accretion, acquire particle break-up data aft of the fan, and generate a unique icing dataset for model and tool development. The work described in this paper focuses on the effect of particle break-up. It was found that there was significant particle break-up downstream of the fan in the bypass, especially with larger initial particle sizes. The metal temperatures on the inlet guide vanes and stators show a temperature increase with increasing particle size. Accretion behavior observed was very similar at the fan stator and splitter lip across all test cases. However at the inlet guide vanes, the accretion decreased with increasing particle size.


2018 ◽  
Author(s):  
Tao Wang ◽  
Yong-sheng Tian ◽  
Zhao Yin ◽  
Qing Gao ◽  
Chun-qing Tan

This paper proposes an inlet guide vane control law optimization technique for improving the off-design working condition thermal efficiency of triaxial gas turbine. Gas turbine dynamic and steady component-level simulation models are established in MATLAB/SIMULINK via Newton-Raphson algorithm based on component characteristic maps. After validating the models against experimental data and Gasturb software, they are applied to determine the effects of guide vane angle on gas turbine performance parameters. High Efficiency Mode (HEM) is utilized to adjust the power turbine inlet guide vanes to enhance the gas turbine efficiency and decrease the specific fuel consumption under off-design working conditions on account of the above gas turbine overall performance analysis results. The optimal angles of power turbine inlet guide vanes for various working conditions are acquired based on the steady gas turbine model as-established. HEM enhances the gas turbine’s thermal efficiency without exceeding its temperature or rotational speed constraints. The Radial Basis Function (RBF), a three-layer, feedforward neural network, is employed to fit the optimal guide vane angles and establish the corresponding relationship between the angles and various working conditions by system identification. The control strategy and gas turbine dynamic simulation model are tested in MATLAB/SIMULINK to verify their effects on gas turbine performance. The guide vane angle is found to significantly influence the gas turbine operating parameters, and HEM to effectively optimize gas turbine performance even within unpredictable atmospheric environment and working conditions.


Author(s):  
Ahmed Abdelwahab

The performance of the PSA (Pressure Swing Adsorption) or VPSA (Vacuum Pressure Swing Adsorption) cycle in an oxygen air separation process is significantly dependent upon the working capacity and working selectivity afforded by the adsorbent. These parameters in turn are dependent on the adsorption pressures employed in the VPSA cycle. Despite the increasing demand for increased capacity and pressure in VPSA air separation plants, they have conventionally used rotary-type positive displacement blowers as the process machinery. These blowers, while most adapted to the oscillating nature of the pressure swing cycles, have increasing high cost per capacity at higher capacities and become very inefficient as the cycle pressures are increased. A new low cost and more efficient process machinery solution is introduced through the use of a moderate speed direct coupled integrated feed and vacuum centrifugal compressor with inlet guide vanes to achieve high efficiencies during the varying operating conditions of the VPSA cycle. In this paper the fundamentals of a VPSA cycle as it applies to a centrifugal compressor operation is presented. A model of the design and predicted performance of a feed and vacuum VPSA centrifugal compressor is presented. A discussion of the proposed design in comparison to a conventional blower is presented. The model and predictions indeed show the superiority of the new design concept to the conventional process machinery equipment in terms of power savings and capacity increase. This new design however requires a feedback control system for the inlet guide vanes.


Author(s):  
Hiroshi Uchida ◽  
Mutsuo Shiraki ◽  
Akinobu Bessho ◽  
Yoichi Yagi

In Japan, a program of research and development of a 100 kW automotive ceramic gas turbine (CGT) has been carried out in the Petroleum Energy Center with active cooperation of petroleum, automobile and ceramics industries as well as other related industries. As a part of this research and development program, we have studied and developed a centrifugal compressor with variable inlet guide vanes for CGT engines. There has been a strong demand for a compressor with a high efficiency and a wide flow range. The compressor performance goals are an adiabatic efficiency of 81% and a surge margin of 8% under maximum power operating conditions. This paper describes the methods for designing impellers, diffusers and variable inlet guide vanes, and presents the results of compressor performance tests. The test results reveal that the surge margin and compressor efficiency at partial load are improved by using inlet guide vanes.


Author(s):  
Wei-Min Feng ◽  
Jing-Ye Pan ◽  
Zhi-Wei Guo ◽  
Qian Cheng

The effects of variable-inlet guide vanes on the performance of an axial flow pump considering tip clearance are investigated. The performance and the main flow field of the whole passage with five different angles of inlet guide vanes ( −10°, −5°, 0°, 5°, 10°) and with two tip clearance sizes (1‰ and 2‰) are presented. The results show that when the angle of inlet guide vane increases from negative values to positive values, the pump head reduces for two tip clearance sizes. This is mainly caused by the change of inlet velocity triangle of blade. Moreover, as tip clearance size increases from 1‰ to 2‰, both the pump head and efficiency decrease because of increasing of the strength of tip clearance leakage vortex and reverse flow.


1961 ◽  
Vol 83 (4) ◽  
pp. 371-378
Author(s):  
A. J. Stepanoff

The function and effectiveness of the inlet guide vanes to control the blower output and power requirements are examined. Calculated and experimental results of the power reduction by means of guide vanes are presented. The concept of the “Inlet Specific Speed” widely used in centrifugal pump field is discussed in application to the blowers. A method of estimating the performance of single-stage blowers for any position of the guide vanes is suggested. A “casing characteristic” is introduced for this purpose and its utility for the calculation of the impeller diameter for a reduction of the output is demonstrated. The performance of the inlet vanes of multistage blowers is reviewed.


Author(s):  
Zhiwei Guo ◽  
Jingye Pan ◽  
Zhongdong Qian ◽  
Bin Ji

The effect of the inlet guide vanes on cavitation performance of an axial pump is investigated to assess the mechanism for cavitation in pumps and improve their cavitation performance. The effect of inlet guide vane angles on cavitation performance was assessed experimentally, and computational fluid dynamics was used to analyze the inner flow field of the axial pump and to probe the cavitation mechanism. The simulation results agree qualitatively with the experimental data, showing that cavitation performance is improved with positive inlet guide vane angles but hampered with negative ones. The cavitation performance itself is controlled by the cavitation volume, which first expands circumferentially when the net positive suction head decreases from a certain large value and then develops toward the axis radially after the net positive suction head reaches a certain value. This is when the cavitation performance deteriorates. Comparing cavitation volume for the critical net positive suction head as determined by two different methods, the method based on efficiency drop (NPSHeff.,1%) is found to be more suitable than that based on head drop (NPSHhead.,3%). Furthermore, the distribution of swirl is shown to be closely related to the distribution of cavitation, a feature that may be used to predict cavitation along the impeller.


Sign in / Sign up

Export Citation Format

Share Document