Ceramic Stationary Gas Turbine Development Program: Third Annual Summary

Author(s):  
Mark van Roode ◽  
William D. Brentnall ◽  
Kenneth O. Smith ◽  
Bryan D. Edwards ◽  
Leslie J. Faulder ◽  
...  

The goal of the Ceramic Stationary Gas Turbine (CSGT) Development Program, under the sponsorship of the United States Department of Energy (DOE), Office of Industrial Technologies (OIT), is to improve the performance (fuel efficiency, output power, exhaust emissions) of stationary gas turbines in cogeneration through the selective replacement of hot section components with ceramic parts. The program, currently in Phase II focuses on detailed engine and component design, ceramic component fabrication and testing, establishment of a long term materials property data base, the development of supporting nondestructive evaluation (NDE) technologies, and the application of ceramic component life prediction. A 4000 hr engine field test is planned for Phase III of the program. This paper summarizes progress from January 1995 through January 1996. First generation designs of the primary ceramic components (first stage blades and nozzles, combustor liners) for the program engine, the Solar Centaur 50S, and of the secondary metallic components interfacing with the ceramic parts were completed. The fabrication of several components has been completed as well. These components were evaluated in rigs and the Centaur 50S test engine. NTI64 (Norton Advanced Ceramics) and GN-10 (AlliedSignal Ceramic Components) silicon nitride dovetail blades were cold and hot spin tested and engine tested at the baseline nominal turbine rotor inlet temperature (TRIT) of 1010°C. Full scale SiC/SiC continuous fiber-reinforced ceramic matrix composite (CFCC) liners (B.F. Goodrich Aerospace) were also rig tested and engine tested at the nominal baseline TRIT of 1010°C. One of the engine tests, incorporating both the GN-10 blades and the full scale SiC/SiC CFCC liners, was performed for 21.5 hrs (16 hrs at 100% load) with six start/stop cycles. A cumulative 24.5 hrs of engine testing was performed at the end of January, 1996. The ceramic components were in good condition following completion of the testing. Subscale Hexoloy® SA silicon carbide (Carborundum) and enhanced SiC/SiC CFCC (DuPont Lanxide Composites) and Al2O3/Al2O3 CFCC (Babcock & Wilcox) combustor liners were tested to evaluate mechanical attachment, durability and/or emissions reduction potential. The enhanced SiC/SiC CFCC of DuPont Lanxide Composites demonstrated superior durability in subscale combustor testing and this material was subsequently selected for the fabrication of full scale combustor liners for final engine rig testing in Phase II and field testing in Phase III of the program. Enhanced SiC/SiC CFCC liners also showed significantly reduced emissions of NOx and CO when compared with conventionally cooled subscale metallic liners. This observation is believed to apply generally to “hot wall” combustor substrates. The emissions results for the enhanced SiC/SiC CFCC liners were paralleled by similar emissions levels of NOx and CO monitored during engine testing with B.F. Goodrich Aerospace SiC/SiC CFCC combustor liners. NOx levels below 25 ppmv and CO levels below 10 ppmv were measured during the engine testing. Short term (1,000 hrs) creep testing of candidate ceramic materials under approximate nozzle “hot spot” conditions was completed and long term (5000–10,000 hrs) creep testing is in progress. The selected nozzle material, SN-88 silicon nitride, has survived over 5,500 hrs at 1288°C and 186 MPa stress at the end of January, 1996.

Author(s):  
Isashi Takehara ◽  
Tetsuo Tatsumi ◽  
Yoshihiro Ichikawa

The Japanese Ceramic Gas Turbine (CGT) research and development program (FY1988–1998) as a part of the New Sunshine Project funded by the Ministry of International Trade and Industry (MITI) was completed in March 1999. Kawasaki Heavy Industries, Ltd. (KM) participated in this research program from the beginning and developed a twin-shaft CGT with a recuperator, designated as the “CGT302”. The purposes of this program were: 1) to achieve both a high efficiency and low pollutant emissions level using ceramic components, 2) to prove a multi-fuel capability to be used in co-generation systems, and 3) to demonstrate long-term operation. The targets of this program were: i) to achieve a thermal efficiency of over 42% at a turbine inlet temperature (TIT) of 1350°C, ii) to keep its emissions within the regulated value by the law, and iii) to demonstrate continuous operation for more than a thousand hours at 1200°C TIT. The CGT302 has successfully attained its targets. In March 1999 the CGT302 recorded 42.1% thermal efficiency, and 31.7 ppm NOx emissions (O2 = 16%) at 1350°C TIT. At this time it had also accumulated over two thousand hours operation at 1200°C. In this paper, we summarize the development of the CGT302.


2002 ◽  
Vol 124 (3) ◽  
pp. 627-635 ◽  
Author(s):  
I. Takehara ◽  
T. Tatsumi ◽  
Y. Ichikawa

The Japanese ceramic gas turbine (CGT) research and development program (FY1988-1998) as a part of the New Sunshine Project funded by the Ministry of International Trade and Industry (MITI) was completed in March 1999. Kawasaki Heavy Industries, Ltd. (KHI) participated in this research program from the beginning and developed a twin-shaft CGT with a recuperator, designated as the “CGT302.” The purposes of this program were (1) to achieve both a high efficiency and low pollutant emissions level using ceramic components, (2) to prove a multifuel capability to be used in cogeneration systems, and (3) to demonstrate long-term operation. The targets of this program were (i) to achieve a thermal efficiency of over 42 percent at a turbine inlet temperature (TIT) of 1350°C, (ii) to keep its emissions within the regulated value by the law, and (iii) to demonstrate continuous operation for more than a thousand hours at 1200°C TIT. The CGT302 has successfully attained its targets. In March 1999 the CGT302 recorded 42.1 percent thermal efficiency, and 31.7 ppm NOx emissions (O2=16 percent) at 1350°C TIT. At this time it had also accumulated over 2000 hours operation at 1200°C. In this paper, we summarize the development of the CGT302.


Author(s):  
Frederick D. Slaney

Over the past seven years, an extensive hybrid bearing development program has been conducted at Textron Lycoming. This paper will report the details of testing and the extraordinary results which can be obtained with silicon nitride balls as applied in hybrid bearings on gas turbine engines. This paper describes the analytically predicted advantages which low mass silicon nitride balls offer at speeds over 2.0MDN. Rig testing comparing hybrid bearings to standard bearings is reported. Testing included heat generation evaluation which showed that hybrid bearings generate an average of 40% less heat than standard bearings. Rig simulation of the AGT1500 mission duty cycle demonstrated that the hybrid silicon nitride bearing system is robust enough to handle the most severe operating conditions. Testing under severe slipping/skidding conditions demonstrated good resistance to skid failure. Under conditions selected to produce high wear, no wear was induced in a hybrid bearing while severe wear was induced in the M50 steel bearing. These preliminary successes lead to active engine testing on the AGT1500 and a new test program to demonstrate operation at 4.0 MDN. As a result of these programs Textron Lycoming now considers hybrid ceramic bearings as a viable design to be used in high speed development applications. This paper provides design detail and test data covering the work outlined above.


Author(s):  
Sazo Tsuruzono ◽  
Makoto Yoshida ◽  
Toshifumi Kubo ◽  
Takashi Ono ◽  
Takero Fukudome

An 8000 kW class hybrid gas turbine (HGT) project, administered by the New Energy and Industrial Technology Development Organization (NEDO) and sponsored by the Ministry of International Trade and Industry (MITI), has been started in July 1999 in Japan[1]. The target of this project is improvement in thermal efficiency and output power by using ceramic components, and earlier commercialization of the gas turbine system. Ceramic components are used for stationary parts subjected to high temperature, such as combustor liners, transition ducts, and first stage turbine nozzles. The gas turbine development was conducted in cooperation with Kawasaki Heavy Industries, Ltd. (KHI). Kyocera started a study on fabricating the ceramic HGT components after evaluating their shape, placement, and fabrication methods. For these ceramic components, we are using the SN282 silicon nitride material developed and used for ceramic gas turbine components in the previous ceramic gas turbine project (300kW CGT)[2-4]. We have started to accumulate the strength evaluation data, using test bars cut from the aforementioned components, and begun long term tensile creep testing to confirm the reliability of the ceramic components.


Author(s):  
Jeffrey R. Price ◽  
Oscar Jimenez ◽  
Vijay Parthasarathy ◽  
Narendernath Miriyala

The Ceramic Stationary Gas Turbine (CSGT) program is being performed under the sponsorship of the United States Department of Energy, Office of Industrial Technologies. The objective of the program is to improve the performance of stationary gas turbines in cogeneration through the selective replacement of cooled metallic hot section components with uncooled ceramic parts. This review summarizes the progress on Phase III of the program which involves field testing of the ceramic components at a cogeneration end user site and characterization of the ceramic components following the field test exposure. The Solar Centaur 50S engine, which operates a turbine rotor inlet temperature (TRIT) of 1010°C (1850°F), was selected for the developmental program. The program goals include an increase in the TRIT to 1121°C (2050 °F), accompanied by increases in thermal efficiency and output power. This will be accomplished by the incorporation of uncooled ceramic first stage blades and nozzles, and a “hot wall” ceramic combustor liner. The performance improvements are attributable to the increase in TRIT and the reduction in cooling air requirements for the ceramic parts. The “hot wall” ceramic liners also enable a reduction in gas turbine emissions of NOx and CO. The component design and material selection have been definitized for the ceramic blades, nozzles and combustor liners. Each of these ceramic component designs were successfully tested in short term engine tests in the Centaur 50S engine test cell facility at Solar. Based on the results of the engine testing of the ceramic components, minor redesigns of the ceramic/metallic attachments were conducted where necessary. Based on their performance in a 100 hour cyclic in-house engine test, the ceramic components are approved for field testing. To date, four field installations of the CSGT Centaur 50S engine totaling over 4000 hours of operation have been initiated under the program at an industrial cogeneration site. This paper discusses the component design and material selection, in house engine testing, field testing, and component characterization.


Author(s):  
Mark van Roode ◽  
William D. Brentnall ◽  
Paul F. Norton ◽  
Gary L. Boyd

A program is being performed under the sponsorship of the United States Department of Energy, Office of Industrial Technology, to improve the performance of stationary gas turbines in cogeneration through the selective replacement of hot section components with ceramic parts. It is envisioned that the successful demonstration of ceramic gas turbine technology, and the systematic incorporation of ceramics in existing and future gas turbines will enable more efficient engine operation, resulting in significant fuel savings, increased output power, and reduced emissions. The engine selected for the program, the Centaur 50 (formerly named Centaur ‘H’) will be retrofitted with first stage ceramic blades, first stage ceramic nozzles, and a ceramic combustor liner. The engine hot section is being redesigned to adapt the ceramic parts to the existing metallic support structure. The work in Phase 1 of the program involved concept and preliminary engine and component design, ceramic materials selection, technical and economic evaluation, and concept assessment. A detailed work plan was developed for Phases II and III of the program. The work in Phase II addresses detailed engine and component design, and ceramic specimen and component procurement and testing. Ceramic blades, nozzles, and combustor liners will be tested in subscale rigs and in a gasifier rig which is a modified Centaur 50 engine. The Phase II effort also involves long term testing of ceramics, development of appropriate nondestructive technologies for part evaluation, and component life prediction. Phase III of the program focuses on a 4,000 hour engine test at a cogeneration site. This paper summarizes the progress on the program through the end of 1993.


Author(s):  
Satoru Yamada ◽  
Keiichiro Watanabe ◽  
Massaki Masuda

NGK Insulators, Ltd. (NGK) fabricates ceramic turbine rotors and nozzle components for the Automotive Ceramic Gas Turbine development program (CGT program), conducted by the Petroleum Energy Center (PEC) of Japan. Both the rotor and nozzle components are made of silicon nitride. The turbine rotor is a radial type having a 127 mm tip diameter, and the segment type nozzle is formed integrally with either three or four vanes and shrouds. This paper discusses various processes of fabricating the ceramic components, dependence of the fabrication processes on dimensional accuracy, and the performance of each of the processes.


Author(s):  
Shuji Daimaru ◽  
Ryuji Takeuchi ◽  
Masaki Takeda ◽  
Masayuki Ishibashi

The Mizunami Underground Research Laboratory (MIU) is now under construction by the Japan Atomic Energy Agency in the Tono area of central Japan. The MIU project is being implemented in three overlapping Phases: Surface-based Investigation (Phase I), Construction (Phase II) and Operation (Phase III). The changes of groundwater pressure due to shaft excavation can be considered analogous to a large-scale pumping test. Therefore, there is the possibility that the site scale groundwater field (several km square) can be approximated by the long-term groundwater pressure monitoring data from Phase II. Based on the monitoring observations, hydrogeological characteristics were estimated using the s-log(t/r2) plot based on the Cooper-Jacob straight line method. Results of the s-log(t/r2) plots are as follows. The groundwater flow field around the MIU construction site is separated into domains by an impermeable fault. In other words, the fault is a hydraulic barrier. Hydraulic conductivity calculated from s-log(t/r2) plots are in the order of 1.0E−7(m/s). The above results from the long term monitoring during Phase II are a verification of the hydrogeological characteristics determined in the Phase I investigations.


Author(s):  
Robin W. Parry ◽  
Edward House ◽  
Matthew Stauffer ◽  
Michael Iacovelli ◽  
William J. Higgins

Development of the Northrop Grumman / Rolls-Royce WR21 Intercooled Recuperated (ICR) Gas Turbine, begun in 1992, is now well advanced and system testing has been completed on eight engine builds at the Royal Navy’s Admiralty Test House located at the Defence Evaluation and Research Agency, Pyestock in the United Kingdom. Test activity is shortly to move to the US Navy’s Test Site at the Naval Surface Warfare Center, Carderock Division – Ship Systems Engineering Station in Philadelphia, PA, where a new test facility has been built to carry out some final development testing and an endurance test. A previous paper on this subject (94-GT-186) defined a test program leading to a design review and the beginning of Qualification Testing. The development program has since evolved and it is the aim of this paper to summarize engine testing to date and set out the plan for conclusion of development testing. The paper will describe the development of the Philadelphia Test Site, as a combined site for the US Navy’s Integrated Power System (IPS) and ICR testing. This will include a description of the advanced, high-accuracy Data Acquisition System (DAS). Finally, the test program and the development and endurance test objectives will be outlined.


Author(s):  
Kozi Nishio ◽  
Junzo Fujioka ◽  
Tetsuo Tatsumi ◽  
Isashi Takehara

With the aim of achieving higher efficiency, lower pollutant emissions, and multi-fuel capability for small to medium-sized gas turbine engines for use in co-generation systems, a ceramic gas turbine (CGT) research and development program is being promoted by the Japanese Ministry of International Trade and Industry (MITI) as a part of its “New Sunshine Project”. Kawasaki Heavy Industries (KHI) is participating in this program and developing a regenerative two-shaft CGT (CGT302). In 1993, KHI conducted the first test run of an engine with full ceramic components. At present, the CGT302 achieves 28.8% thermal efficiency at a turbine inlet temperature (TIT) of 1117°C under ISO standard conditions and an actual TIT of 1250°C has been confirmed at the rated speed of the basic CGT. This paper consists of the current state of development of the CGT302 and how ceramic components are applied.


Sign in / Sign up

Export Citation Format

Share Document