Separated Flows in Axial Flow Compressor With Variable Stator Vanes at Positive Incidence Angles

Author(s):  
Vaclav Cyrus

A detailed investigation of three-dimensional flow was carried out in a low speed rear axial compressor stage with the change of the stator blade row setting. The stator blade stagger change was in the range of (−14) – (23) degree. Measurements were performed by means of both stationary and rotating pressure probes at seven working points. The origin of large regions of separated flow in blade rows at positive incidence angles was analysed with the use of the spanwise diffusion factor distribution. These areas in the rotor and stator rows originated as the diffusion factor exceeded the critial value D = 0.6 within (1/4 – 1/3) of the blade height near one end-wall. The rotating stall in compressor stage arised when large regions of separated flow occured simultaneously in both rotor and stator blade rows.

1987 ◽  
Vol 109 (3) ◽  
pp. 354-361 ◽  
Author(s):  
Y. Dong ◽  
S. J. Gallimore ◽  
H. P. Hodson

Measurements have been performed in a low-speed high-reaction single-stage axial compressor. Data obtained within and downstream of the rotor, when correlated with the results of other investigations, provide a link between the existence of suction surface–hub corner separations, their associated loss mechanisms, and blade loading. Within the stator, it has been shown that introducing a small clearance between the stator blade and the stationary hub increases the efficiency of the stator compared to the case with no clearance. Oil flow visualizaton indicated that the leakage reduced the extensive suction surface–hub corner separation that would otherwise exist. A tracer gas experiment showed that the large radial shifts of the surface streamlines indicated by the oil flow technique were only present close to the blade. The investigation demonstrates the possible advantages of including hub clearance in axial flow compressor stator blade rows.


1986 ◽  
Author(s):  
Y. Dong ◽  
S. J. Gallimore ◽  
H. P. Hodson

Measurements have been performed in a low speed high reaction single stage axial compressor. Data obtained within and downstream of the rotor, when correlated with the results of other investigations, provide a link between the existence of suction surface-hub corner separations, their associated loss mechanisms and blade loading. Within the stator, it has been shown that introducing a small clearance between the stator blade and the stationary hub increases the efficiency of the stator compared to the case with no clearance. Oil flow visualisation indicated that the leakage reduced the extensive suction surface-hub corner separation that would otherwise exist. A tracer gas experiment showed that the large radial shifts of the surface streamlines indicated by the oil flow technique were only present close to the blade. The investigation demonstrates the possible advantages of including hub clearance in axial flow compressor stator blade rows.


2006 ◽  
Vol 2006 (0) ◽  
pp. _G607-1_-_G607-4_
Author(s):  
Ken-ichiro IWAKIRI ◽  
Ryusuke OHTAGURO ◽  
Sho BONKOHARA ◽  
Yasuhiro SHIBAMOTO ◽  
Kazutoyo YAMADA ◽  
...  

Author(s):  
H. E. Gallus ◽  
H. Hoenen

Criteria for the maximum diffusion allowable in a blade row without reaching stall play an important part in the design of highly loaded axial-flow compressors. Most of these criteria for maximum blade loading were derived from wind tunnel measurements of 2-d-steady cascade flow. As the flow field in turbomachines is extremely unsteady and of three-dimensional nature the boundary layers are influenced by these effects. The paper deals with the results of boundary layer measurements in a stator blade channel of a subsonic axial-flow compressor stage at various operating points between unthrottled and highly throttled flow (near stall). In front of the stator, the time-averaged velocity profiles as well as the fluctuations due to the unsteady flow field downstream of the rotor were measured. The growing of the separation zones inside the channel with increased blade load is studied in detail. Photos of flow visualization in the boundary layers by dye-injection and flow patterns derived from hot-wire measurements illustrate the physics of boundary layer behavior and separation due to increasing stator blade load. The investigations include measurements of the turbulence energy and a frequency analysis of the velocity fluctuations in the boundary layers.


Author(s):  
Ruchika Agarwal ◽  
Sridharan R. Narayanan ◽  
Shraman N. Goswami ◽  
Balamurugan Srinivasan

The performance of axial flow compressor stage can be improved by minimizing the effects of secondary flow and by avoiding flow separation. At higher blade loading, interaction of tip secondary flow and separated flow on blade surface is more near the tip of the rotor. This results in stall and hence decreases compressor performance. A previous study [1] was carried out to improve the performance of a rotating row of blades with the help of Vortex Generators (VGs) and considerable effects were observed. The current investigation is carried out to find out the effect of Vortex Generator (VG) on the performance of a compressor stage. NASA Rotor 37 with NASA Stator 37 (stage) is used as a test case for the current numerical investigation. VGs are placed at different chord wise as well as span wise locations. A mesh sensitivity study has been done so that simulation result is mesh independent. The results of numerical simulation with different geometrical forms and locations of VGs are presented in this paper. The investigation includes a description of the secondary flow effect and separation zone in compressor stage based on numerical as well as experimental results of NASA Rotor 37 with Stator 37 (without VG). It is also observed that the shape and location of the VG impacts the end wall cross flow and flow deflection [1], which result in enhanced stall range.


1984 ◽  
Vol 106 (2) ◽  
pp. 337-345
Author(s):  
B. Lakshminarayana ◽  
N. Sitaram

The annulus wall boundary layer inside the blade passage of the inlet guide vane (IGV) passage of a low-speed axial compressor stage was measured with a miniature five-hole probe. The three-dimensional velocity and pressure fields were measured at various axial and tangential locations. Limiting streamline angles and static pressures were also measured on the casing of the IGV passage. Strong secondary vorticity was developed. The data were analyzed and correlated with the existing velocity profile correlations. The end wall losses were also derived from these data.


Author(s):  
K. Mohan ◽  
S. A. Guruprasad

An axially non-uniform type of rotor tip clearance was conceived and tried on a single stage compressor. This concept is based on the advantages of a smaller tip clearance in the front portion of the blade and a larger clearance in the rear portion which allows a higher tip leakage flow to interact with the passage secondary flow, casing wall boundary layer, separated flow on the blade suction surface and the scraping vortex, which are more prominent at the rear portion of the blade. Experimental results indicated that an axially non-uniform clearance can provide improved performance of a compressor stage. Providing the tip clearance in the compressor casing instead of at the blade tip indicated certain advantages. An ‘optimum’ value of rotor tip clearance was noticed for this compressor stage, both for axially uniform and axially non-uniform clearance.


2018 ◽  
Vol 78 ◽  
pp. 271-279 ◽  
Author(s):  
Mauro Righi ◽  
Vassilios Pachidis ◽  
László Könözsy ◽  
Lucas Pawsey

Author(s):  
Kirubakaran Purushothaman ◽  
N. R. Naveen Kumar ◽  
Vidyadheesh Pandurangi ◽  
Ajay Pratap

Abstract Variability in stator vanes is a widely used technique to improve the stability and efficiency of axial flow compressor in gas turbine engines. Most of the modern aircraft jet engines use variable stator vanes in both low pressure and high pressure compressors primarily for off-design performance. This study discusses in detail about the effect of stator variability in a three stage low pressure axial compressor at design and off-design conditions. Computational flow analysis were carried out for the three stage low pressure compressor with variability in inlet guide vane and first stage stator blade. Detailed investigation on flow physics was carried out in rotor blade passages with stator variability. At off-design speeds, the reduction in flow velocity is lower than the reduction in blade tip speed. This leads to mismatch in flow angles and inlet blade angles causing high incidence and large flow separation in blade passage. This results in poor aerodynamic stability of the axial compressor at off-design speeds. In this study, aerodynamic performance of compressor is evaluated from 70% to 100% design speeds with different stagger angle setting of inlet guide vane at each speed. Further, to improve 2nd stage rotor performance, variability was introduced in 1st stage stator blade and performance was evaluated. Compressor test results are compared with CFD data for design and off-design speeds.


Sign in / Sign up

Export Citation Format

Share Document