scholarly journals An Experimental Investigation of Vibration Localization in Bladed Disks: Part II — Forced Response

Author(s):  
Marlin J. Kruse ◽  
Christophe Pierre

The results of an experimental investigation on the effects of random blade mistuning on the forced dynamic response of bladed disks are reported. Two experimental specimens are considered: a nominally periodic twelve-bladed disk with equal blade lengths, and the corresponding mistuned bladed disk, which features slightly different blades of random lengths. Both specimens are subject to traveling-wave excitations delivered by piezo-electric actuators. The primary aim of the experiment is to demonstrate the occurrence of an increase in forced response blade amplitudes due to mistuning, and to verify analytical predictions about the magnitude of these increases. In particular, the impact of localized mode shapes, engine order excitation, and disk structural coupling on the sensitivity of forced response amplitudes to blade mistuning is reported. This work reports one of the first systematic experiments carried out to demonstrate and quantify the effect of mistuning on the forced response of bladed disks.

Author(s):  
Marlin J. Kruse ◽  
Christophe Pierre

The results of an experimental investigation of the effects of random blade mistuning on the free dynamic response of bladed disks are reported. Two experimental specimens are considered: a nominally periodic twelve-bladed disk with equal blade lengths, and the corresponding mistuned bladed disk, which features slightly different, random blade lengths. In the experiment, both the spatially extended modes of the tuned system and the localized modes of the mistuned system are identified. Particular emphasis is placed on the transition to localized mode shapes as the modal density in various frequency regions increases. Excellent qualitative and quantitative agreement is obtained between experimental measurements and results obtained by finite element analysis. Experimental results are additionally used to validate a component mode-based, reduced-order modeling technique for bladed disks. This work reports the first systematic experiment carried out to demonstrate the occurrence of vibration localization in bladed disks.


Author(s):  
John Judge ◽  
Christophe Pierre ◽  
Oral Mehmed

The results of an experimental investigation on the effects of random blade mistuning on the forced dynamic response of bladed disks are reported. The primary aim of the experiment is to gain understanding of the phenomena of mode localization and forced response blade amplitude magnification in bladed disks. A stationary, nominally periodic, twelve-bladed disk with simple geometry is subjected to a traveling-wave, out-of-plane, “engine order” excitation delivered via phase-shifted control signals sent to piezo-electric actuators mounted on the blades. The bladed disk is then mistuned by the addition of small, unequal weights to the blade tips, and it is again subjected to a traveling wave excitation. The experimental data is used to verify analytical predictions about the occurrence of localized mode shapes, increases in forced response amplitude, and changes in resonant frequency due to the presence of mistuning. Very good agreement between experimental measurements and finite element analysis is obtained. The out-of-plane response is compared and contrasted with the previously reported in-plane mode localization behavior of the same test specimen. This work also represents an important extension of previous experimental study by investigating a frequency regime in which modal density is lower but disk-blade interaction is significantly greater.


Aerospace ◽  
2006 ◽  
Author(s):  
Hongbao Yu ◽  
K. W. Wang

Extensive investigations have been conducted to study the vibration localization phenomenon and the excessive forced response that can be caused by mistuning in bladed disks. Most previous researches have focused on attacking the mistuning issue in the bladed disk, such as reducing the sensitivity of the structure to mistuning through mechanical tailoring, or design optimization. Few have focused on developing effective vibration control methods for such systems. This study extends the piezoelectric network concept, which has been utilized for mode delocalization in periodic structures, to the control of mistuned bladed disks under engine order excitation. A piezoelectric network is synthesized and optimized to effectively suppress the excessive vibration in the bladed disk caused by mistuning. One of the merits of such an approach is that the optimum design is independent of the number of spatial harmonics, or engine orders. Local circuits are first formulated by connecting inductors and resistors with piezoelectric patches on the individual blades. While these local circuits can function as conventional damped absorber when properly tuned, they do not perform well for bladed disks under all engine order excitations. To address this issue, capacitors are introduced to couple the individual local circuitries. Through such networking, an absorber system that is independent of the engine order can be achieved. Monte Carlo simulation is performed to investigate the effectiveness of the network for bladed disk with a range of mistuning level of its mechanical properties. The robustness issue of the network in terms of detuning of the electric circuit parameters is also studied. Finally, negative capacitance is introduced and its effect on the robustness of the network is investigated.


2000 ◽  
Vol 123 (4) ◽  
pp. 940-950 ◽  
Author(s):  
J. Judge ◽  
C. Pierre ◽  
O. Mehmed

The results of an experimental investigation on the effects of random blade mistuning on the forced dynamic response of bladed disks are reported. The primary aim of the experiment is to gain understanding of the phenomena of mode localization and forced response blade amplitude magnification in bladed disks. A stationary, nominally periodic, 12-bladed disk with simple geometry is subjected to a traveling-wave out-of-plane “engine order” excitation delivered via phase-shifted control signals sent to piezoelectric actuators mounted on the blades. The bladed disk is then mistuned by the addition of small, unequal weights to the blade tips, and it is again subjected to a traveling wave excitation. The experimental data is used to verify analytical predictions about the occurrence of localized mode shapes, increases in forced response amplitude, and changes in resonant frequency due to the presence of mistuning. Very good agreement between experimental measurements and finite element analysis is obtained. The out-of-plane response is compared and contrasted with the previously reported in-plane mode localization behavior of the same test specimen. This work also represents an important extension of previous experimental study by investigating a frequency regime in which modal density is lower but disk-blade interaction is significantly greater.


2007 ◽  
Vol 129 (5) ◽  
pp. 559-566 ◽  
Author(s):  
Hongbiao Yu ◽  
K. W. Wang

Extensive investigations have been conducted to study the vibration localization phenomenon and the excessive forced response that can be caused by mistuning in bladed disks. Most previous researches have focused on analyzing∕predicting localization or attacking the mistuning issue via mechanical tailoring. Few have focused on developing effective vibration control methods for such systems. This study extends the piezoelectric network concept, which has been utilized for mode delocalization in periodic structures, to the control of mistuned bladed disks under engine order excitation. A piezoelectric network is synthesized and optimized to effectively suppress vibration in bladed disks. One of the merits of such an approach is that the optimum design is independent of the number of spatial harmonics, or engine orders. Local circuits are first formulated by connecting inductors and resistors with piezoelectric patches on the individual blades. Although these local circuits can function as conventional damped absorber when properly tuned, they do not perform well for bladed disks under all engine order excitations. To address this issue, capacitors are introduced to couple the individual local circuitries. Through such networking, an absorber system that is independent of the engine order can be achieved. Monte Carlo simulation is performed to investigate the effectiveness of the network for a bladed disk with a range of mistuning level of its mechanical properties. The robustness issue of the network in terms of detuning of the electric circuit parameters is also studied. Finally, negative capacitance is introduced and its effect on the performance and robustness of the network is investigated.


Author(s):  
Sebastian Willeke ◽  
Lukas Schwerdt ◽  
Lars Panning-von Scheidt ◽  
Jörg Wallaschek

A harmonic mistuning concept for bladed disks is analyzed in order to intentionally reduce the forced response of specific modes below their tuned amplitude level. By splitting a mode pair associated with a specific nodal diameter pattern, the lightly damped traveling wave mode of the nominally tuned blisk is superposed with its counter-rotating complement. Consequently, a standing wave is formed in which the former wave train benefits from an increase in aerodynamic damping. Unlike previous analyses of randomly perturbed configurations, the mode-specific stabilization is intentionally promoted through adjusting the harmonic content of the mistuning pattern. Through a re-orientation of the localized mode shapes in relation to the discrete blades, the response is additionally attenuated by an amount of up to 7.6 %. The achievable level of amplitude reduction is analytically predicted based on the properties of the tuned system. Furthermore, the required degree of mistuning for a sufficient separation of a mode pair is derived.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Christian M. Firrone ◽  
Teresa M. Berruti ◽  
Muzio M. Gola

The paper presents an original multiple excitation system based on electromagnets with force control. The system is specifically designed in order to investigate the dynamics of bladed disks, since it mimics the excitation existing in a real engine. Moreover, the system is suitable for forced response tests of bladed disks with nonlinear dynamic response, like in the case of presence of friction contacts, since the amplitude of the exciting force is known with good precision. For this purpose, a device called force-measuring electromagnet (FMEM) was designed and employed during the system calibration. The excitation system is applied to the test rig Octopus, which includes underplatform dampers (UPDs). Tests were carried out under different excitation force amplitude values. The tests put in evidence the presence of mistuning and the UPDs' capability of attenuating the mistuning phenomena.


Author(s):  
S. Tatzko ◽  
L. Panning-von Scheidt ◽  
J. Wallaschek ◽  
A. Kayser ◽  
G. Walz

Freestanding turbine blades have typically low structural damping and thus require additional friction damping devices, such as underplatform dampers. The friction coupling between neighboring blades reduces response amplitude and increases resonance frequency. Along with forced response excitation large blades, especially of last stage, could be excited by fluid structural interaction (flutter). To prevent such excitation alternate mistuned blade patterns are beneficial disturbing traveling waves in the stage. In this paper the influence of alternate mistuning is investigated with a simplified oscillator chain as well as a bladed disk assembly coupled by frictional contacts. It is pointed out that the performance of friction coupling can be improved by alternate mistuning as long as the engine order of the excitation is below quarter of the number of blades. Alternate mistuning causes a mode coupling between two nodal diameter vibration mode shapes allowing for energy transfer. The in-house developed software code DATAR is enhanced and alternate mistuning can be applied to the blades as well as to the damping elements. For validation the DATAR code was applied to an alternate mistuned last stage blade of a Siemens gas turbine and compared with available field engine measurement.


Author(s):  
Jiuzhou Liu ◽  
Lin Li ◽  
Pengcheng Deng ◽  
Chao Li

This paper is meant to contribute a further investigation of the dynamic characteristics of the bladed disks with piezo-network and piezo-shunt circuit. The non-engine-order (NEO) excitation is taken into account from a practical point of view, and the mechanisms of vibration suppression of the two electromechanical systems are explained by means of the modal analysis and the energy analysis. First of all, the dynamic equations are derived based on a lumped parameter electromechanical model, and a normalizing process is used to make the analysis results more general. After the modal analysis of the electromechanical systems, the vibration suppression effect is analyzed when the bladed disk is excited by the engine-order (EO) excitation and the NEO excitation respectively. Then, an energy analysis of the electromechanical systems is performed to understand the dynamic behaviors of the systems better. Finally, the effect of reducing the amplitude magnification of the mistuned bladed disk is investigated. The research results turn out that the electrical natural frequencies (induced by electrical elements) of the system with piezo-shunt circuit are dense, while those of the system with piezo-network are not. When the system is excited by an EO excitation, the energy dissipated by resistors in the shunt circuit is slightly more than that in the network. However, the former is much less than the latter when the system is excited by an NEO excitation. A statistical analysis has been performed and proved that both the piezo-shunt circuit and the piezo-network can compensate the amplitude magnification of the forced response induced by mistuning, and the piezo-network has a better performance when the bladed disk is excited by an NEO excitation.


Author(s):  
Alejandro J. Rivas-Guerra ◽  
Marc P. Mignolet

This paper focuses on the determination and study of the maximum amplification of the steady state forced response of bladed disks due to mistuning. First, an optimization strategy is proposed in which partially mistuned bladed disks are considered as physical approximations of the worst case disk and the mistuned properties are sought to maximize the response of a specific blade. This approach is exemplified on both a reduced order model of a blisk and a single-degree-of-freedom per blade disk model an extensive parametric study of which is conducted with respect to blade-to-blade coupling, damping, and engine order. A mode shape-based formulation of the amplification factor is then developed to clarify the findings of the parametric study in the strong coupling/small damping limit. In this process, the upper bound of Whitehead is recovered for all engine orders and number of blades and the conditions under which this limit is exactly achieved or closely approached are clarified. This process also uncovers a simple yet reliable approximation of the resonant mode shapes and natural frequencies of the worst disk.


Sign in / Sign up

Export Citation Format

Share Document