Experimental Investigation of Mode Localization and Forced Response Amplitude Magnification for a Mistuned Bladed Disk

Author(s):  
John Judge ◽  
Christophe Pierre ◽  
Oral Mehmed

The results of an experimental investigation on the effects of random blade mistuning on the forced dynamic response of bladed disks are reported. The primary aim of the experiment is to gain understanding of the phenomena of mode localization and forced response blade amplitude magnification in bladed disks. A stationary, nominally periodic, twelve-bladed disk with simple geometry is subjected to a traveling-wave, out-of-plane, “engine order” excitation delivered via phase-shifted control signals sent to piezo-electric actuators mounted on the blades. The bladed disk is then mistuned by the addition of small, unequal weights to the blade tips, and it is again subjected to a traveling wave excitation. The experimental data is used to verify analytical predictions about the occurrence of localized mode shapes, increases in forced response amplitude, and changes in resonant frequency due to the presence of mistuning. Very good agreement between experimental measurements and finite element analysis is obtained. The out-of-plane response is compared and contrasted with the previously reported in-plane mode localization behavior of the same test specimen. This work also represents an important extension of previous experimental study by investigating a frequency regime in which modal density is lower but disk-blade interaction is significantly greater.

2000 ◽  
Vol 123 (4) ◽  
pp. 940-950 ◽  
Author(s):  
J. Judge ◽  
C. Pierre ◽  
O. Mehmed

The results of an experimental investigation on the effects of random blade mistuning on the forced dynamic response of bladed disks are reported. The primary aim of the experiment is to gain understanding of the phenomena of mode localization and forced response blade amplitude magnification in bladed disks. A stationary, nominally periodic, 12-bladed disk with simple geometry is subjected to a traveling-wave out-of-plane “engine order” excitation delivered via phase-shifted control signals sent to piezoelectric actuators mounted on the blades. The bladed disk is then mistuned by the addition of small, unequal weights to the blade tips, and it is again subjected to a traveling wave excitation. The experimental data is used to verify analytical predictions about the occurrence of localized mode shapes, increases in forced response amplitude, and changes in resonant frequency due to the presence of mistuning. Very good agreement between experimental measurements and finite element analysis is obtained. The out-of-plane response is compared and contrasted with the previously reported in-plane mode localization behavior of the same test specimen. This work also represents an important extension of previous experimental study by investigating a frequency regime in which modal density is lower but disk-blade interaction is significantly greater.


Author(s):  
Marlin J. Kruse ◽  
Christophe Pierre

The results of an experimental investigation of the effects of random blade mistuning on the free dynamic response of bladed disks are reported. Two experimental specimens are considered: a nominally periodic twelve-bladed disk with equal blade lengths, and the corresponding mistuned bladed disk, which features slightly different, random blade lengths. In the experiment, both the spatially extended modes of the tuned system and the localized modes of the mistuned system are identified. Particular emphasis is placed on the transition to localized mode shapes as the modal density in various frequency regions increases. Excellent qualitative and quantitative agreement is obtained between experimental measurements and results obtained by finite element analysis. Experimental results are additionally used to validate a component mode-based, reduced-order modeling technique for bladed disks. This work reports the first systematic experiment carried out to demonstrate the occurrence of vibration localization in bladed disks.


Author(s):  
Marlin J. Kruse ◽  
Christophe Pierre

The results of an experimental investigation on the effects of random blade mistuning on the forced dynamic response of bladed disks are reported. Two experimental specimens are considered: a nominally periodic twelve-bladed disk with equal blade lengths, and the corresponding mistuned bladed disk, which features slightly different blades of random lengths. Both specimens are subject to traveling-wave excitations delivered by piezo-electric actuators. The primary aim of the experiment is to demonstrate the occurrence of an increase in forced response blade amplitudes due to mistuning, and to verify analytical predictions about the magnitude of these increases. In particular, the impact of localized mode shapes, engine order excitation, and disk structural coupling on the sensitivity of forced response amplitudes to blade mistuning is reported. This work reports one of the first systematic experiments carried out to demonstrate and quantify the effect of mistuning on the forced response of bladed disks.


Author(s):  
François Moyroud ◽  
Torsten Fransson ◽  
Georges Jacquet-Richardet

The high performance bladed-disks used in today’s turbomachines must meet strict standards in terms of aeroelastic stability and resonant response level. One structural characteristic that can significantly impact on both these area is that of bladed-disk mistuning. To predict the effects of mistuning, computationally efficient methods are necessary to make it feasible, especially in an industrial environment, to perform free vibration and forced response analyses of full assembly finite element models. Due to the size of typical finite element models of industrial bladed-disks, efficient reduction techniques must be used to systematically produce reduced order models. The objective of this paper is to compare two prevalent reduction methods on representative test rotors, including a modern design industrial shrouded bladed-disk, in terms of accuracy (for frequencies and mode shapes), reduction order, computational efficiency, sensitivity to inter-sector elastic coupling, and ability to capture the phenomenon of mode localization. The first reduction technique employs a modal reduction approach with a modal basis consisting of mode shapes of the tuned bladed-disk which can be obtained from a classical cyclic symmetric modal analysis. The second reduction technique is based on a Craig and Bampton substructuring and reduction approach. The results show a perfect agreement between the two reduced order models and the non-reduced finite element model. It is found that the phenomena of mode localization is equally well predicted by the two reduction models. In terms of computational cost, reductions from 1 to 2 orders of magnitude are obtained for the industrial bladed-disk, with the modal reduction method being the most computationally efficient approach.


Author(s):  
Jing Tong ◽  
Chaoping Zang ◽  
Evgeny Petrov

Abstract An effective method is developed for the efficient calculation of the transient vibration response for mistuned bladed disks under complex excitation and varying rotation speeds. The method uses the large-scale finite element modelling of the bladed disks allowing the accurate description of the dynamic properties of the mistuned bladed disks. The realistic distributions of the excitation forces are considered, which resulted in the multiharmonic excitation loads. The transient response calculation is based on the analytically derived expressions for the transient forced response and the effective method used for the model reduction. The effects of the varying rotation speed on the natural frequencies and mode shapes of the mistuned bladed disk and its effects on the amplitude and the spectral composition of the loading are allowed for. The different functions of the rotation speed variation can be analyzed. Numerical studies of the transient forced response and the amplitude amplification in mistuned bladed disks are performed when the resonance regimes are passed during gas-turbine engine acceleration or deceleration. The effects of different types of excitation force and mistuning on transient amplitude amplification are illustrated by a large number of the computational results and comparative analysis. These results and analysis of transient forced response are shown on an example of a realistic mistuned bladed disk.


Author(s):  
Y. F. Chen ◽  
I. Y. Shen

This paper is to study how flexible bearings and housing affect mode localization of a nearly cyclic symmetric system with mistune. A finite element analysis is first conducted on a reference system that consists of a circular disk and 24 blades with mistune. The disk is annular with an inner rim and an outer rim. A fixed boundary condition is imposed at the inner rim, while the 24 blades with mistune are evenly attached to the outer rim and subjected to a free boundary condition. As a result of the mistune, the reference system presents 26 localized torsional modes as well as 24 localized in-plane modes in its blade vibration. When the fixed inner rim is replaced by a bearing support (i.e., an elastic boundary condition), not only the localized torsional modes can change their natural frequencies and mode shapes but also the number of the localized torsional modes may be increased to 28 in some range of bearing stiffness. Similarly, when the bladed-disk reference system is mounted on a stationary housing via a bearing support, the number of the localized in-plane modes can change from 24 to 33 modes. Moreover, localized mode shapes change significantly, and some of them involve significant housing deformation. To understand this phenomenon theoretically, we first demonstrate that the presence of bearing and housing provides additional degrees of freedom, which, in turn, allow the bladed-disk system to have additional disk modes. When the bearing and housing stiffness is properly tuned, some of these additional disk modes may possess significant torsional or in-plane displacement components in the blades. If these additional modes happen to have a natural frequency that is close to those of the localized modes of the reference system, these additional modes will join the localized modes to form new localized modes. As a result, the number of localized modes increases and the mode shapes change significantly.


2002 ◽  
Vol 124 (4) ◽  
pp. 942-952 ◽  
Author(s):  
F. Moyroud ◽  
T. Fransson ◽  
G. Jacquet-Richardet

The high performance bladed disks used in today’s turbomachines must meet strict standards in terms of aeroelastic stability and resonant response level. One structural characteristic that can significantly impact on both these areas is that of bladed disk mistuning. To predict the effects of mistuning, computational efficient methods are much needed to make free-vibration and forced-response analyses of full assembly finite element (FE) models feasible in both research and industrial environments. Due to the size and complexity of typical industrial bladed disk models, one must resort to robust and systematic reduction techniques to produce reduced-order models of sufficient accuracy. The objective of this paper is to compare two prevalent reduction methods on representative test rotors, including a modern design industrial shrouded bladed disk, in terms of accuracy (for frequencies and mode shapes), reduction order, computational efficiency, sensitivity to intersector elastic coupling, and ability to capture the phenomenon of mode localization. The first reduction technique employs a modal reduction approach with a modal basis consisting of mode shapes of the tuned bladed disk which can be obtained from a classical cyclic symmetric modal analysis. The second reduction technique uses Craig and Bampton substructure modes. The results show a perfect agreement between the two reduced-order models and the nonreduced finite element model. It is found that the phenomena of mode localization is equally well predicted by the two reduction models. In terms of computational cost, reductions from one to two orders of magnitude are obtained for the industrial bladed disk, with the modal reduction method being the most computationally efficient approach.


2021 ◽  
Author(s):  
Jing Tong ◽  
Chaoping Zang ◽  
E. P. Petrov

Abstract During fast gas-turbine engine acceleration and deceleration the transient vibration effects in bladed disk vibration become significant and the transient response has to be calculated. In this paper an effective method is developed for efficient calculations of the transient vibration response for mistuned bladed disks under varying rotation speeds. The method uses the large-scale finite element modelling of the bladed disks allowing the accurate description of the dynamic properties of the mistuned bladed disks. The effects of the varying rotation speed on the natural frequencies and mode shapes of a mistuned bladed disk and its effects on the amplitude and the spectral composition of the loading are considered. The dependency of the modal characteristics on the rotation speed are based on the evaluation of these characteristics at reference points followed by the interpolation to obtain values at any rotation speed from the operating range. A new method has been developed for the interpolation of mode shapes while preserving the orthogonality and mass-normalization of the mode shapes. The method of mode shape interpolation is elaborated for tuned and mistuned bladed disks. The accuracy and efficiency of the method is demonstrated on test examples and on analysis of transient forced response of realistic bladed discs.


Author(s):  
Jing Tong ◽  
Chaoping Zang ◽  
Evgeny Petrov

Abstract During fast gas-turbine engine acceleration and deceleration the transient vibration effects in bladed disk vibration become significant and the transient response has to be calculated. In this paper an effective method is developed for efficient calculations of the transient vibration response for mistuned bladed disks under varying rotation speeds. The method uses the large-scale finite element modelling of the bladed disks allowing the accurate description of the dynamic properties of the mistuned bladed disks. The effects of the varying rotation speed on the natural frequencies and mode shapes of a mistuned bladed disk and its effects on the amplitude and the spectral composition of the loading are considered. The dependency of the modal characteristics on the rotation speed are based on the evaluation of these characteristics at reference points followed by the interpolation to obtain values at any rotation speed from the operating range. A new method has been developed for the interpolation of mode shapes while preserving the orthogonality and mass-normalization of the mode shapes. The method of mode shape interpolation is elaborated for tuned and mistuned bladed disks. The accuracy and efficiency of the method is demonstrated on test examples and on analysis of transient forced response of realistic bladed discs.


2012 ◽  
Vol 510 ◽  
pp. 160-164
Author(s):  
Ai Lun Wang ◽  
Qiang Huang

The finite element models of bladed disks with different lashing wire locations were established. The natural characteristics and mode shapes of bladed disks with different lashing wire locations were compared, and the effect of lashing wire location on the natural characteristics and mode localization of bladed disks were analyzed. These results show that different lashing wire locations could carry different natural frequencies to bladed disk, and there must be one lashing wire location with the highest frequencies. Lashing wire location has a significant influence on the mode localization of the mistuned bladed disks, and the mode localization of the bladed disks is less sensitive to mistuning when the lashing wire is in the middle of blades.


Sign in / Sign up

Export Citation Format

Share Document