Design Possibilities and Performance of Combined Cycle Operation of Converted Steam Power Plants

Author(s):  
M. J. J. Linnemeijer ◽  
J. P. Van Buijtenen

An interesting method for “boosting thermal efficiency and/or power output of an existing steam power plant is repowering through the addition of gas turbines. The forced draught fan is replaced by a gas turbine and the air heater by low-temperature economisers. This conversion will change the performance of the installation significantly. Therefore the design of the existing installation has to be reviewed based on new unit performance calculations. Since the conversion has to be economical, it is important to find a good compromise between investment and improvement of performance. This paper describes the change in performance of the installation created by the conversion in general and a number of design possibilities based on the experience gained with the realisation of a number of conversion projects. These projects show a possible efficiency increase of over 10% and a power increase of up to 30%.

Author(s):  
M. J. J. Linnemeijer ◽  
J. P. van Buijtenen ◽  
A. U. van Loon

This paper describes the conversion of existing conventional steam power plants into combined cycle plants. A number of Dutch utility companies are currently performing or planning this conversion on their gas-fired power stations, mainly in order to conserve fuel. Modifications of boiler and steam cycle, necessary for the new concept, are presented in general terms, together with a detailed description of one of the projects.


Author(s):  
G. Negri di Montenegro ◽  
A. Peretto ◽  
E. Mantino

In this paper, a thermoeconomic analysis is carried out for two and three pressure level combined cycles derived from existing steam power plants. The considered steam power plants are among the most widespread in the Italian territory (70 MW, 160 MW, 320 MW power output). First of all, the gas turbine plants that best match the steam power plants’ requirements are selected among existing units. Subsequently, the thermodynamic analysis for the repowered plants is performed, taking into account the off-design working condition of some components such as, the steam turbines and the condenser. Then, the economic evaluation for the repowered plants is carried out by determining the cost per kWh, the pay back period and the internal rate of return. The analysis permits the most economic choice to be made. The thermoeconomic investigation was also performed for a new combined cycle power plant. The study has revealed that the repowering of the three existing steam power plants in two or three pressure level combined cycle plants is more convenient than building a new combined cycle with higher efficiency. It has also pointed out that the repowering of the 320 MW existing steam power plant in a three pressure level reheat combined cycle plant supplies the lowest cost per kWh among all the other repowered plants analyzed. The revamping and environment effect on the above mentioned existing steam power plants was also investigated and it resulted that this solution has a cost per kWh that is much higher than that of the repowered steam plants and the new combined cycle.


Author(s):  
Mircea Fetescu

The electric power generation world is currently confronted with new challenges: deregulation, open competition, new players entering the business, new regulations governing the return on investment, increased complexity and risk. In order to maintain or enhance their competitive position the electricity generators have as main objectives to lower generating costs, increase operating and dispatching flexibility and manage fuel related risks: availability, supply diversification, prices and price escalation and finally to capture value added profits. In order to meet new requirements of electricity generators, ABB has developed a hybrid power plant concept integrating the sequential combustion gas turbines GT24/GT26 with existing or new conventional steam power plants: the High Efficiency Coal and Gas (HE-C&G). The HE-C&G, with its unique design, operating and dispatching flexibility, provides our customers with the benefits of competitive power generation: the owner/operator can optimise — on line — the plant fuel and O&M costs, increase the availability, extend economic life and lower the environmental impact of the power plant. And even more, the HE-C&G creates the ability to benefit of the market opportunities: buy cheaper fuels and sell the electricity when profitable. This paper evaluates the feasibility of combining conventional steam power plants with sequential combustion gas turbines GT24/GT26 and recommends the HE-C&G as one of the most competitive alternatives for power generation, especially for re-evaluation of existing assets and positioning in the competitive environment.


ijd-demos ◽  
2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Nida Urrohmah ◽  
Karin Caroline Kelly ◽  
Fitri Yuliani

Electric Steam Power Plants (PLTU) need coal as fuel to produce electricity. The higher the electrical energy needed to eat, the more fuel will be used. This has happened in the construction of shelters 9 and 10 Suralaya Merak-Banten steam power plant (PLTU). This development is reaping various kinds of rejection because it causes environmental damage not only in the area around the development operation but also in the Greater Jakarta area. The rejection movement was initiated by local residents and supported by international Environmental NGOs.Pembangkit Listrik Tenaga Uap (PLTU) membutuhkan batu bara sebagai bahan bakar untuk menghasilkan energi listrik. Semakin tinggi energi listrik yang dibutuhkan makan akan semakin banyak bahan bakar yang digunakan. Hal ini terjadi pada pembangunan shelter 9 dan 10 PLTU Suralaya di pulau Jawa spesifiknya di daerah Merak-Banten. Pembangunan ini menuai berbagai macam penolakan karena mengakibatkan kerusakan lingkungan tidak hanya pada wilayah sekitar operasi pembangunan namun juga pada wilayah Jabodetabek. Gerakan penolakan diinisiasi tentunya oleh warga setempat dan didukung dengan NGO Internasional penggiat isu lingkungan. 


Author(s):  
G. Negri di Montenegro ◽  
M. Gambini ◽  
A. Peretto

This study is concerned with the repowering of existing steam power plants (SPP) by gas turbine (GT) units. The energy integration between SPP and GT is analyzed taking into particular account the employment of simple and complex cycle gas turbines. With regard to this, three different gas turbine has been considered: simple Brayton cycle, regenerative cycle and reheat cycle. Each of these cycles has been considered for feed water repowering of three different existing steam power plants. Moreover, the energy integration between the above plants has been analyzed taking into account three different assumptions for the SPP off-design conditions. In particular it has been established to keep the nominal value for steam turbine power output or for steam flow-rate at the steam turbine inlet or, finally, for steam flow-rate in the condenser. The numerical analysis has been carried out by the employment of numerical models regarding SPP and GT, developed by the authors. These models have been here properly connected to evaluate the performance of the repowered plants. The results of the investigation have revealed the interest of considering the use of complex cycle gas turbines, especially reheat cycles, for the feed water repowering of steam power plants. It should be taken into account that these energy advantages are determined by a repowering solution, i.e. feed water repowering which, although it is attractive for its simplicity, do not generally allows, with Brayton cycle, a better exploitation of the energy system integration in comparison with other repowering solutions. Besides these energy considerations, an analysis on the effects induced by repowering in the working parameters of existing components is also explained.


Author(s):  
Rolf H. Kehlhofer

In the past 15 years the combined-cycle (gas/steam turbine) power plant has come into its own in the power generation market. Today, approximately 30 000 MW of power are already installed or being built as combined-cycle units. Combined-cycle plants are therefore a proven technology, showing not only impressive thermal efficiency ratings of up to 50 percent in theory, but also proving them in practice and everyday operation (1) (2). Combined-cycle installations can be used for many purposes. They range from power plants for power generation only, to cogeneration plants for district heating or combined cycles with maximum additional firing (3). The main obstacle to further expansion of the combined cycle principle is its lack of fuel flexibility. To this day, gas turbines are still limited to gaseous or liquid fuels. This paper shows a viable way to add a cheap solid fuel, coal, to the list. The plant system in question is a 2 × 150 MW combined-cycle plant of BBC Brown Boveri with integrated coal gasification plant of British Gas/Lurgi. The main point of interest is that all the individual components of the power plant described in this paper have proven their worth commercially. It is therefore not a pilot plant but a viable commercial proposition.


Author(s):  
Nikhil Dev ◽  
Gopal Krishan Goyal ◽  
Rajesh Attri ◽  
Naresh Kumar

In the present work, graph theory and matrix method is used to analyze some of the heat recovery possibilities with the newly available gas turbine engines. The schemes range from dual pressure heat recovery steam generation systems, to triple pressure systems with reheat in supercritical steam conditions. From the developed methodology, result comes out in the form of a number called as index. A real life operating Combined Cycle Power Plant (CCPP) is a very large and complex system. Efficiency of its components and sub-systems are closely intertwined and insuperable without taking the effect of others. For the development of methodology, CCPP is divided into six sub-systems in such a way that no sub-system is independent. Digraph for the interdependencies of sub-system is organized and converted into matrix form for easy computer processing. The results obtained with present methodology are in line with the results available in literature. The methodology is developed with a view that power plant managers can take early decision for selection, improvements and comparison, amongst the various options available, without having in-depth knowledge of thermodynamics analysis.


Author(s):  
Hiroyuki Yamazaki ◽  
Yoshiaki Nishimura ◽  
Masahiro Abe ◽  
Kazumasa Takata ◽  
Satoshi Hada ◽  
...  

Tohoku Electric Power Company, Inc. (Tohoku-EPCO) has been adopting cutting-edge gas turbines for gas turbine combined cycle (GTCC) power plants to contribute for reduction of energy consumption, and making a continuous effort to study the next generation gas turbines to further improve GTCC power plants efficiency and flexibility. Tohoku-EPCO and Mitsubishi Hitachi Power Systems, Ltd (MHPS) developed “forced air cooling system” as a brand-new combustor cooling system for the next generation GTCC system in a collaborative project. The forced air cooling system can be applied to gas turbines with a turbine inlet temperature (TIT) of 1600deg.C or more by controlling the cooling air temperature and the amount of cooling air. Recently, the forced air cooling system verification test has been completed successfully at a demonstration power plant located within MHPS Takasago Works (T-point). Since the forced air cooling system has been verified, the 1650deg.C class next generation GTCC power plant with the forced air cooling system is now being developed. Final confirmation test of 1650deg.C class next generation GTCC system will be carried out in 2020.


Author(s):  
M. D. Duran ◽  
A. Rovira

It is the purpose of this work to show how to select the best configuration as a function of the combined cycle power. It uses thermo-economic optimization technique based on flexible genetic algorithms (GA). These results will be based on a Thermoeconomic model developed in previous works, this maximizes the cash flow by choosing the correct parameters for the plant design — particularly those corresponding to the HRSG — subject to the restriction that hypothetical, but realistic turbines have already been chosen. This study begins with an analysis of the trends in the commercial gas turbines (GT) design. It was observed that in spite of the diverse companies, the design parameters as well as the turbine cost, follow certain trends depending on the turbine power. When a CCGT power plant is planned, once the GT is selected, is necessary to determine which configuration of the HRSG is the most appropriate in order to get the maximum performance and the best economical results. There is a wide variety of selections of CCGT power plants configurations. To facilitate the analysis of this ample number of CCGT systems we will apply our study to the following types of HRSG: Double pressure with and without reheater, Triple pressure levels with reheater and Triple pressure levels with reheater and supercritical pressure. As a result of this study it may be observed that some design trends should be established so as to decide which configuration (including supercritical cycles) is better to select to specific power.


Sign in / Sign up

Export Citation Format

Share Document