scholarly journals Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines: Part II — Experimental and Theoretical Analysis

Author(s):  
Bernhard Küsters ◽  
Helnz-Adolf Schreiber ◽  
Ulf D. Köller ◽  
Reinhard Mönig

In Part I of this paper a family of numerically optimized subsonic compressor airfoils for heavy-duty gas turbines, covering a wide range of flow properties, is presented. The objective of the optimization was 10 create profiles with a wide low loss incidence range. Therefore, design point and off-design performance had to be considered in an objective function. The special flow conditions in large scale gas turbines have been taken into account by performing the numerical optimization procedure at high Reynolds numbers and high turbulence levels. The objective of Part II is to examine some of the characteristics describing the new airfoils, as well as to prove the reliability of the design process and the flow solver applied. Therefore, some characteristic members of the new airfoil series have been extensively investigated in the cascade windtunnel of DLR Cologne. Experimental and numerical results show profile Mach number distributions, total pressure losses, flow turning and static pressure rise for the entire incidence range. The design goal with low losses and especially a wide operating range could be confirmed, as well as a mild stall behavior. Boundary layer development, particularly near stall condition, is discussed using surface flow visualization and the results of boundary layer calculations. An additional experimental study, using liquid crystal coating, provides necessary information on suction surface boundary-layer transition at high Reynolds numbers. Finally, results of Navier-Stokes simulations are presented which enlighten the total pressure loss development and flow turning behavior especially at high incidence in relation to the results of the design tool.

1999 ◽  
Vol 122 (3) ◽  
pp. 406-414 ◽  
Author(s):  
Bernhard Ku¨sters ◽  
Heinz-Adolf Schreiber ◽  
Ulf Ko¨ller ◽  
Reinhard Mo¨nig

In Part I of this paper a family of numerically optimized subsonic compressor airfoils for heavy-duty gas turbines, covering a wide range of flow properties, is presented. The objective of the optimization was to create profiles with a wide low loss incidence range. Therefore, design point and off-design performance had to be considered in an objective function. The special flow conditions in large-scale gas turbines have been taken into account by performing the numerical optimization procedure at high Reynolds numbers and high turbulence levels. The objective of Part II is to examine some of the characteristics describing the new airfoils, as well as to prove the reliability of the design process and the flow solver applied. Therefore, some characteristic members of the new airfoil series have been extensively investigated in the cascade wind tunnel of DLR cologne. Experimental and numerical results show profile Mach number distributions, total pressure losses, flow turning, and static pressure rise for the entire incidence range. The design goal with low losses and especially a wide operating range could be confirmed, as well as a mild stall behavior. Boundary layer development, particularly near stall condition, is discussed using surface flow visualization and the results of boundary layer calculations. An additional experimental study, using liquid crystal coating, provides necessary information on suction surface boundary-layer transition at high Reynolds numbers. Finally, results of Navier–Stokes simulations are presented that enlighten the total pressure loss development and flow turning behavior, especially at high incidence in relation to the results of the design tool. [S0889-504X(00)02602-7]


Author(s):  
Heinz-Adolf Schreiber ◽  
Wolfgang Steinert ◽  
Bernhard Küsters

An experimental and analytical study has been performed on the effect of Reynolds number and free-stream turbulence on boundary layer transition location on the suction surface of a controlled diffusion airfoil (CDA). The experiments were conducted in a rectilinear cascade facility at Reynolds numbers between 0.7 and 3.0×106 and turbulence intensities from about 0.7 to 4%. An oil streak technique and liquid crystal coatings were used to visualize the boundary layer state. For small turbulence levels and all Reynolds numbers tested the accelerated front portion of the blade is laminar and transition occurs within a laminar separation bubble shortly after the maximum velocity near 35–40% of chord. For high turbulence levels (Tu > 3%) and high Reynolds numbers transition propagates upstream into the accelerated front portion of the CDA blade. For those conditions, the sensitivity to surface roughness increases considerably and at Tu = 4% bypass transition is observed near 7–10% of chord. Experimental results are compared to theoretical predictions using the transition model which is implemented in the MISES code of Youngren and Drela. Overall the results indicate that early bypass transition at high turbulence levels must alter the profile velocity distribution for compressor blades that are designed and optimized for high Reynolds numbers.


2000 ◽  
Vol 124 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Heinz-Adolf Schreiber ◽  
Wolfgang Steinert ◽  
Bernhard Ku¨sters

An experimental and analytical study has been performed on the effect of Reynolds number and free-stream turbulence on boundary layer transition location on the suction surface of a controlled diffusion airfoil (CDA). The experiments were conducted in a rectilinear cascade facility at Reynolds numbers between 0.7 and 3.0×106 and turbulence intensities from about 0.7 to 4 percent. An oil streak technique and liquid crystal coatings were used to visualize the boundary layer state. For small turbulence levels and all Reynolds numbers tested, the accelerated front portion of the blade is laminar and transition occurs within a laminar separation bubble shortly after the maximum velocity near 35–40 percent of chord. For high turbulence levels (Tu>3 percent) and high Reynolds numbers, the transition region moves upstream into the accelerated front portion of the CDA blade. For those conditions, the sensitivity to surface roughness increases considerably; at Tu=4 percent, bypass transition is observed near 7–10 percent of chord. Experimental results are compared to theoretical predictions using the transition model, which is implemented in the MISES code of Youngren and Drela. Overall, the results indicate that early bypass transition at high turbulence levels must alter the profile velocity distribution for compressor blades that are designed and optimized for high Reynolds numbers.


1956 ◽  
Vol 60 (541) ◽  
pp. 67-70
Author(s):  
T. A. Thomson

The blow-down type of intermittent, supersonic tunnel is attractive because of its simplicity and because relatively high Reynolds numbers can be obtained for a given size of test section. An adverse characteristic, however, is the fall of stagnation temperature during runs, which can affect experiments in several ways. The Reynolds number varies and the absolute velocity is not constant, even if the Mach number and pressure are; heat-transfer cannot be studied under controlled conditions and the experimental errors arising from the effect of heat-transfer on the boundary layer vary in time. These effects can become significant in quantitative experiments if the tunnel is large and the variation of temperature very rapid; the expense required to eliminate them might then be justified.


Author(s):  
David Händel ◽  
Reinhard Niehuis ◽  
Uwe Rockstroh

In order to determine the aerodynamic behavior of a Variable Inlet Guide Vane as used in multishaft compressors, extensive experimental investigations with a 2D linear cascade have been conducted. All the experiments were performed at the High-Speed Cascade Wind Tunnel at the Institute of Jet Propulsion. They covered a wide range of Reynolds numbers and stagger angles as they occur in realistic turbomachines. Within this work at first the observed basic flow phenomena (loss development, overturning) will be explained. For the present special case of a symmetric profile and a constant decreasing chord length along the vane height, statements about different spanwise position can be made by investigating different Reynolds numbers. The focus of this paper is on the outflow of the VIGV along the vane height. Results for an open flow separation on the suction side are presented, too. Stall condition can be delayed by boundary layer control. This is done using a wire to trigger an early boundary layer transition. The outcomes of the trip wire measurement are finally discussed. The objective of this work is to evaluate the influence of the stagger angle and Reynolds number on the total pressure losses and the deviation angle. The results of the work presented here, gives a better insight of the efficient use of a VIGV.


1969 ◽  
Vol 36 (3) ◽  
pp. 598-607 ◽  
Author(s):  
T. Maxworthy

Flow around a sphere for Reynolds numbers between 2 × 105 and 6 × 104 has been observed by measuring the pressure distribution around a circle of longitude under a variety of conditions. These include the effects of laminar and turbulent boundary layer separation, tunnel blockage, various boundary layer trip arrangements and inserting an object to disrupt the unsteady, recirculation region behind the sphere.


Author(s):  
Kiyoto Mori ◽  
Hiroki Imanishi ◽  
Yoshiyuki Tsuji ◽  
Masashi Kashiwagi ◽  
Masaru Inada ◽  
...  

The purpose of this study is to evaluate the frictional resistance with sufficient accuracy and to evaluate the drag coefficient at high Reynolds numbers. We have measured the resistance of flat plate with using a towing tank. Correcting the wave-making resistance, pressure resistance, and drag on turbulence simulator, it is found that the measured frictional resistance is smaller than the Karman-Schoenherr formula. But it agrees with the values suggested by Osaka et. al and Osterlund et. al.


Sign in / Sign up

Export Citation Format

Share Document