Modelling Agglomeration and the Fluid Dynamic Behaviour of Agglomerates

Author(s):  
S. Stu¨bing ◽  
M. Dietzel ◽  
M. Sommerfeld

For modeling agglomeration processes in the frame of the Lagrangian approach, where the particles are treated as point masses, an extended structure model was developed. This model provides not only information on the number of primary particles in the agglomerate, but also on the geometrical distension of the agglomerates. These are for example the interception diameter, the radius of gyration, the fractal dimension and the porosity of the agglomerate using the convex hull. The question however arises now, which is the proper agglomerate cross-section for the calculation of the drag force. In order to find an answer, the Lattice-Boltzmann-Method (LBM) was applied for simulating the flow about fixed agglomerates of different morphology and number of primary particles involved. From these simulations the drag coefficient was determined using different possible cross-sections of the agglomerate. Numerous simulations showed that the cross-section of the convex hull yields a drag coefficient which is almost independent on the structure of the agglomerate if they have the same cross-sectional area in flow direction. Using the cross-section of the volume equivalent sphere showed a very large scatter in the simulated drag coefficient. This information was accounted for in the Lagrangian agglomeration model. The basis of modeling particle collisions and possible agglomeration was the stochastic inter-particle collision model accounting for the impact efficiency. The possibility of particle sticking was based on a critical velocity determined from an energy balance which accounts for dissipation and the van der Waals adhesion. If the instantaneous relative velocity between the particles is smaller than this critical velocity agglomeration occurs. In order to allow the determination of the agglomerate structure reference vectors are stored between a reference particle and all other primary particles collected in the agglomerate. For describing the collision of a new primary particle with an agglomerate the collision model was extended in order to determine which primary particle in the agglomerate is the collision partner. For demonstrating the capabilities of the Lagrangian agglomerate structure model the dispersion and collision of small primary particles in a homogeneous isotropic turbulence was considered. From these calculations statistics on the properties of the agglomerates were made, e.g. number of primary particles, radius of gyration, porosity, sphericity and fractal dimension. Finally, the dispersion of particles in vertical grid turbulence was calculated by the Lagrangian approach. For one selected model agglomerate, dispersion calculations were performed with different possible characteristic cross-sections of the agglomerate. These calculations gave a deviation of the mean square dispersion of up to 20% after a dispersion time of 0.4 seconds for the different cross-sections. This demonstrates that a proper selection of the cross-section is essential for calculating agglomerate motion in turbulent flows.

The work of multilayer glass structures for central and eccentric compression and bending are considered. The substantiation of the chosen research topic is made. The description and features of laminated glass for the structures investigated, their characteristics are presented. The analysis of the results obtained when testing for compression, compression with bending, simple bending of models of columns, beams, samples of laminated glass was made. Overview of the types and nature of destruction of the models are presented, diagrams of material operation are constructed, average values of the resistance of the cross-sections of samples are obtained, the table of destructive loads is generated. The need for development of a set of rules and guidelines for the design of glass structures, including laminated glass, for bearing elements, as well as standards for testing, rules for assessing the strength, stiffness, crack resistance and methods for determining the strength of control samples is emphasized. It is established that the strength properties of glass depend on the type of applied load and vary widely, and significantly lower than the corresponding normative values of the strength of heat-strengthened glass. The effect of the connecting polymeric material and manufacturing technology of laminated glass on the strength of the structure is also shown. The experimental values of the elastic modulus are different in different directions of the cross section and in the direction perpendicular to the glass layers are two times less than along the glass layers.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Roman N. Lee ◽  
Alexey A. Lyubyakin ◽  
Vyacheslav A. Stotsky

Abstract Using modern multiloop calculation methods, we derive the analytical expressions for the total cross sections of the processes e−γ →$$ {e}^{-}X\overline{X} $$ e − X X ¯ with X = μ, γ or e at arbitrary energies. For the first two processes our results are expressed via classical polylogarithms. The cross section of e−γ → e−e−e+ is represented as a one-fold integral of complete elliptic integral K and logarithms. Using our results, we calculate the threshold and high-energy asymptotics and compare them with available results.


Author(s):  
Georges Griso ◽  
Larysa Khilkova ◽  
Julia Orlik ◽  
Olena Sivak

AbstractIn this paper, we study the asymptotic behavior of an $\varepsilon $ ε -periodic 3D stable structure made of beams of circular cross-section of radius $r$ r when the periodicity parameter $\varepsilon $ ε and the ratio ${r/\varepsilon }$ r / ε simultaneously tend to 0. The analysis is performed within the frame of linear elasticity theory and it is based on the known decomposition of the beam displacements into a beam centerline displacement, a small rotation of the cross-sections and a warping (the deformation of the cross-sections). This decomposition allows to obtain Korn type inequalities. We introduce two unfolding operators, one for the homogenization of the set of beam centerlines and another for the dimension reduction of the beams. The limit homogenized problem is still a linear elastic, second order PDE.


2009 ◽  
Vol 24 (02n03) ◽  
pp. 450-453
Author(s):  
◽  
T. SKORODKO ◽  
M. BASHKANOV ◽  
D. BOGOSLOWSKY ◽  
H. CALÉN ◽  
...  

The two-pion production in pp-collisions has been investigated in exclusive measurements from threshold up to Tp = 1.36 GeV . Total and differential cross sections have been obtained for the channels pnπ+π0, ppπ+π-, ppπ0π0 and also nnπ+π+. For intermediate incident energies Tp > 1 GeV , i.e. in the region, which is beyond the Roper excitation but at the onset of ΔΔ excitation the total ppπ0π0 cross section falls behind theoretical predictions by as much as an order of magnitude near 1.2 GeV, whereas the nnπ+π+ cross section is a factor of five larger than predicted. A model-unconstrained isospin decompostion of the cross section points to a significant contribution of an isospin 3/2 resonance other than the Δ(1232). As a possible candidate the Δ(1600) is discussed.


1969 ◽  
Vol 22 (6) ◽  
pp. 715 ◽  
Author(s):  
RW Crompton ◽  
DK Gibson ◽  
AI McIntosh

The results of electron drift and diffusion measurements in parahydrogen have been analysed to determine the cross sections for momentum transfer and for rotational and vibrational excitation. The limited number of possible excitation processes in parahydrogen and the wide separation of the thresholds for these processes make it possible to determine uniquely the J = 0 → 2 rotational cross section from threshold to 0.3 eV. In addition, the momentum transfer cross section has been determined for energies less than 2 eV and it is shown that, near threshold, a vibrational cross section compatible with the data must lie within relatively narrow limits. The problems of uniqueness and accuracy inherent in the swarm method of cross section analysis are discussed. The present results are compared with other recent theoretical and experimental determinations; the agreement with the most recent calculations of Henry and Lane is excellent.


2020 ◽  
Author(s):  
J. Lee ◽  
et al.

<div>Figure 6. Interpretative cross sections illustrating the cross-sectional geometry of several paleovalleys. See Figure 3 for location of all cross sections and Figure 8 for location of cross section CCʹ. Cross sections AAʹ and BBʹ are plotted at the same scale, and cross section CCʹ is plotted at a smaller scale. Figure 6 is intended to be viewed at a width of 45.1 cm.</div>


2020 ◽  
Vol 66 (3) ◽  
pp. 139-148
Author(s):  
Maja Vončina ◽  
Peter Cvahte ◽  
Ana Kračun ◽  
Tilen Balaško ◽  
Jožef Medved

AbstractThe alloys from Al–Mg–Si system provide an excellent combination of mechanical properties, heat treatment at extrusion temperature, good weldability, good corrosion resistance and formability. Owing to the high casting speed of rods or slabs, the solidification is rather non-equilibrium, resulting in defects in the material, such as crystalline segregations, the formation of low-melting eutectics, the unfavourable shape of intermetallic phases and the non-homogeneously distributed alloying elements in the cross-section of the rods or slabs and in the entire microstructure. The inhomogeneity of the chemical composition and the solid solution negatively affects the strength, the formability in the warm and the corrosion resistance, and can lead to the formation of undesired phases due to segregation in the material. In this experimental investigation, the cross-sections of the rods from two different alloys of the 6xxx group were investigated. From the cross-sections of the rods, samples for differential scanning calorimetry (DSC) at three different positions (edge, D/4 and middle) were taken to determine the influence of inhomogeneity on the course of DSC curve. Metallographic sample preparation was used for microstructure analysis, whereas the actual chemical composition was analysed using a scanning electron microscope (SEM) and an energy dispersion spectrometer (EDS).


2012 ◽  
Vol 9 (3) ◽  
pp. 554-558 ◽  
Author(s):  
Baghdad Science Journal

The differential cross section for the Rhodium and Tantalum has been calculated by using the Cross Section Calculations (CSC) in range of energy(1keV-1MeV) . This calculations based on the programming of the Klein-Nashina and Rayleigh Equations. Atomic form factors as well as the coherent functions in Fortran90 language Machine proved very fast an accurate results and the possibility of application of such model to obtain the total coefficient for any elements or compounds.


2005 ◽  
Vol 20 (16) ◽  
pp. 3701-3703
Author(s):  
Guang-Pei Chen

Using 57.2 pb-1 of data collected with the CLEO-c detector at the ψ(3770) resonance, we measure absolute branching fractions for three D0 and two D+ Cabibbo-allowed hadronic decay modes, and the cross section for [Formula: see text] at [Formula: see text].


2008 ◽  
Vol 23 (27n30) ◽  
pp. 2313-2316 ◽  
Author(s):  
◽  
H. KANDA ◽  
N. CHIGA ◽  
Y. FUJII ◽  
K. FUTATSUKAWA ◽  
...  

The total cross sections for the π+π− photoproduction on the deuteron were measured in an energy range of 0.8 to 1.1 GeV. The obtained total cross section for the quasi-free π+π− photoproduction on the deuteron was about 60 % of those on the free proton. The cross section for Δ++Δ− photoproduction was derived from the non-quasi-free π+π− photoproduction events. It was smaller than the previous data.


Sign in / Sign up

Export Citation Format

Share Document