Multi-Phase Gearbox Modelling Using GPU-Accelerated Smoothed Particle Hydrodynamics Method

Author(s):  
Muraleekrishnan Menon ◽  
Kamil Szewc ◽  
Vishal Maurya

Abstract Developments in automotive design such as electrification of engines and a growing need to improve driveline efficiency requires adaption of old techniques. The ability to make fast and accurate Computational Fluid Dynamics (CFD) assessment is of high importance to the development of novel powertrains. Consequently, innovative numerical techniques and continuous improvements to existing CFD codes is relevant to ensure reliability. This work extends the capabilities of a Smoothed Particle Hydrodynamics (SPH) code to include multiphase modeling, studied using a gearbox model. A vast majority of CFD codes use grid-based approaches following the Eulerian spatial discretization, which is quite established in engineering applications. Lagrangian based approaches where the moving fluid particles are discretized over time and space present a promising alternative. One of the most common methods of this kind is the Smoothed Particle Hydrodynamics (SPH) method, a fully Lagrangian, particle-based approach for fluid-flow simulations. The main advantage is the absence of numerical grid for computations, which eliminates complexities of interface handling. Nowadays, the SPH approach is more commonly used for hydro-engineering applications involving free-surface flows. New techniques to perform numerical simulations on Graphics Processing Units (GPU) virtually eliminates some of the disadvantages of the method. In this work, we present our multi-GPU solution designed for both GPU-equipped desktops and multi-GPU supercomputers. Fluid dynamic simulations on a single gearbox model is used to validate the multiphase model, by comparing the results with earlier simulations that use a single-phase model omitting air-lubricant interface in the gearbox. The base case in the study is a single bevel gear placed inside a cuboid case with a lubricant depth equivalent to 25% gear diameter. Simulations are performed at various rotational speeds, and corresponding lubricant distribution and churning losses are obtained. The current study targets a comparison of the single-phase and multiphase models in approximating the lubricant distribution and churning loss values at nominal rotational speeds. This serves to standardize the numerical procedure, which will help in improving the accuracy of churning loss calculations through validations against experimental results in the future.

Author(s):  
Soroush Abolfathi ◽  
Dong Shudi ◽  
Sina Borzooei ◽  
Abbas Yeganeh-Bakhtiari ◽  
Jonathan Pearson

This study develops an accurate numerical tool for investigating optimal retrofit configurations in order to minimize wave overtopping from a vertical seawall due to extreme climatic events and under changing climate. A weakly compressible smoothed particle hydrodynamics (WCSPH) model is developed to simulate the wave-structure interactions for coastal retrofit structures in front of a vertical seawall. A range of possible physical configurations of coastal retrofits including re-curve wall and submerged breakwater are modelled with the numerical model to understand their performance under different wave and structural conditions. The numerical model is successfully validated against laboratory data collected in 2D wave flume at Warwick Water Laboratory. The findings of numerical modelling are in good agreement with the laboratory data. The results indicate that recurve wall is more effective in mitigating wave overtopping and provides more resilience to coastal flooding in comparison to base-case (plain vertical wall) and submerged breakwater retrofit.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1928 ◽  
Author(s):  
Gorazd Novak ◽  
Angelantonio Tafuni ◽  
José M. Domínguez ◽  
Matjaž Četina ◽  
Dušan Žagar

Fishways have a great ecological importance as they help mitigate the interruptions of fish migration routes. In the present work, the novel DualSPHysics v4.4 solver, based on the smoothed particle hydrodynamics method (SPH), has been applied to perform three-dimensional (3-D) simulations of water flow in a vertical slot fishway (VSF). The model has been successfully calibrated against published field data of flow velocities that were measured with acoustic Doppler velocity probes. A state-of-the-art algorithm for the treatment of open boundary conditions using buffer layers has been applied to accurately reproduce discharges, water elevations, and average velocity profiles (longitudinal and transverse velocities) within the observed pool of the VSF. Results herein indicate that DualSPHysics can be an accurate tool for modeling turbulent subcritical free surface flows similar to those that occur in VSF. A novel relation between the number of fluid particles and the artificial viscosity coefficient has been formulated with a simple logarithmic fit.


Author(s):  
Fabian Thiery ◽  
Fabian Fritz ◽  
Nikolaus A. Adams ◽  
Stefan Adami

AbstractWe comment on a recent article [Comput. Mech. 2020, 65, 487–502] about surface-tension modeling for free-surface flows with Smoothed Particle Hydrodynamics. The authors motivate part of their work related to a novel principal curvature approximation by the wrong claim that the classical curvature formulation in SPH overestimates the curvature in 3D by a factor of 2. In this note we confirm the correctness of the classical formulation and point out the misconception of the commented article.


2018 ◽  
Vol 1 (36) ◽  
pp. 109 ◽  
Author(s):  
Soroush Abolfathi ◽  
Dong Shudi ◽  
Sina Borzooei ◽  
Abbas Yeganeh-Bakhtiari ◽  
Jonathan Pearson

This study develops an accurate numerical tool for investigating optimal retrofit configurations in order to minimize wave overtopping from a vertical seawall due to extreme climatic events and under changing climate. A weakly compressible smoothed particle hydrodynamics (WCSPH) model is developed to simulate the wave-structure interactions for coastal retrofit structures in front of a vertical seawall. A range of possible physical configurations of coastal retrofits including re-curve wall and submerged breakwater are modelled with the numerical model to understand their performance under different wave and structural conditions. The numerical model is successfully validated against laboratory data collected in 2D wave flume at Warwick Water Laboratory. The findings of numerical modelling are in good agreement with the laboratory data. The results indicate that recurve wall is more effective in mitigating wave overtopping and provides more resilience to coastal flooding in comparison to base-case (plain vertical wall) and submerged breakwater retrofit.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Marc C. Keller ◽  
Samuel Braun ◽  
Lars Wieth ◽  
Geoffroy Chaussonnet ◽  
Thilo F. Dauch ◽  
...  

In this paper, the complex two-phase flow during oil-jet impingement on a rotating spur gear is investigated using the meshless smoothed particle hydrodynamics (SPH) method. On the basis of a two-dimensional setup, a comparison of single-phase SPH to multiphase SPH simulations and the application of the volume of fluid method is drawn. The results of the different approaches are compared regarding the predicted flow phenomenology and computational effort. It is shown that the application of single-phase SPH is justified and that this approach is superior in computational time, enabling faster simulations. In the next step, a three-dimensional single-phase SPH setup is exploited to predict the flow phenomena during the impingement of an oil-jet on a spur gear for three different jet inclination angles. The oil’s flow phenomenology is described and the obtained resistance torque is presented. Thereby, a significant effect of the inclination angle on the oil spreading and splashing process as well as the resistance torque is identified.


Sign in / Sign up

Export Citation Format

Share Document