Impact on Thermal Conductivities of Nanostructured Bismuth Telluride Based Thin Films

Author(s):  
Saburo Tanaka ◽  
Masayuki Takashiri ◽  
Koji Miyazaki

Nanostructured bismuth telluride based thin films, including nanoparticle and nanocrystalline have been prepared and measured their thermal conductivities. These thin films exhibit an average grain size of from 10 nm to 150 nm. The cross-plane thermal conductivities are measured by 3-omega method at 300 K. The determined nanostructured bismuth telluride thermal conductivities are 0.18 W/(m·K) and nanoparticle bismuth telluride thin film thermal conductivities are from 0.61 W/(m·K) to 0.80 W/(m·K). As compared with bulk alloys at the same atomic composition, both the nanoparticle and nanocrystalline thin films exhibit a reduction in the thermal conductivity. For more detail analysis, the reduction of the thermal conductivity is examined by a simplified phonon gas model on single crystal of bulk bismuth telluride, antimony telluride and bismuth selenide, The analytical model is consistent with the experimental results, and thus we consider that the thermal conductivity is reduced by the strong phonon scattering.

Author(s):  
Saburo Tanaka ◽  
Masayuki Takashiri ◽  
Koji Miyazaki

Bismuth antimony telluride (Bi0.4Te3.0Sb1.6) nano-porous thin films have been prepared and measured their thermal conductivities. The thin films exhibit an average grain size of 50 nm and random crystal orientation. The cross-plane thermal conductivity is measured by a differential 3ω method at temperature range from 100 to 300 K, and the determined thermal conductivities are from 0.09 to 0.18 W/(m·K). As compared with bulk alloys at the same atomic composition, the nano-porous thin films exhibit an eightfold reduction in the thermal conductivity. For more detail analysis, the reduction of the thermal conductivity is examined by a simplified phonon gas model on a single crystal of bulk Bi2Te3. The analytical model fairly agreed with the experimental results, and thus we consider that the thermal conductivity is reduced by the strong phonon scattering at the nano-pores.


2008 ◽  
Vol 2008.61 (0) ◽  
pp. 291-292
Author(s):  
Makoto TAKIISHI ◽  
Saburo TANAKA ◽  
Hiroshi TSUKAMOTO ◽  
Koji MIYAZAKI

2021 ◽  
Author(s):  
Taher Meydando ◽  
Nazli Donmezer

Abstract Micro-Raman spectroscopy has been preferred recently to measure the thermal conductivity of thin-films due to its nondestructive and non-contact nature. However, the thermal size effects originating from both localized heat generation from Raman laser and phonon scattering at boundaries may cause erroneous estimation of the thermal conductivities with the current approach. In this study, the gray phonon Boltzmann transport equation (BTE) is solved to improve the results of micro-Raman thermal conductivity measurements. Due to the frequency independence of single phonon mode in the gray BTE model, our method stays ahead of most theoretical methods in calculation time while giving adequate agreement with the literature data. The improved thermal conductivities are evaluated at various laser powers and focal lengths. Subsequently, the values of thermal conductivities are compared with a simple slab model in which the deduction of thermal conductivity in sub-micron thicknesses is calculated using reduced heat flux through the slab resulting from phonon directional energy densities. The results show that subsequent errors are present in measuring the thermal conductivity of relatively thick, thin films with this technique which are noticed by comparing with the simple slab model. Finally, a virtual micro-Raman thermography experiment is developed, and its validity is verified by the same slab model.


MRS Advances ◽  
2017 ◽  
Vol 2 (58-59) ◽  
pp. 3651-3656 ◽  
Author(s):  
Xiandong Chen ◽  
Meng An ◽  
Rulei Guo ◽  
Ni Tang ◽  
Zhan Peng ◽  
...  

ABSTRACTThe thermal properties of organic membranes attract much attention due to the fact that heat dissipation in electronic devices limits their functionality and reliability. Here, we enhance the thermal conductivity of polyvinyl alcohol (PVA) membrane using nano-fibers fabricated by electrospinning. Measured by the 3-Omega method, the results show that the effective thermal conductivity of the electrospinning membranes (with/without Cu nanoparticles) are as high as 0.7 W/m-K at room temperature which is as twice as the value of thermal conductivity of amorphous spin-coated PVA membrane (0.35 W/m-K). The mechanism of enhancement are that, compared with amorphous membrane, the phonon scattering is attenuated and the crystallinity is improved in the electrospinning process. Our studies bring new insights in designing new kind of membrane with high thermal conductivity.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1547
Author(s):  
Rauf Khan ◽  
Michitaka Ohtaki ◽  
Satoshi Hata ◽  
Koji Miyazaki ◽  
Reiji Hattori

The temperature dependence thermal conductivity of the indium-gallium-zinc oxide (IGZO) thin films was investigated with the differential three-omega method for the clear demonstration of nanocrystallinity. The thin films were deposited on an alumina (α-Al2O3) substrate by direct current (DC) magnetron sputtering at different oxygen partial pressures ([PO2] = 0%, 10%, and 65%). Their thermal conductivities at room temperature were measured to be 1.65, 1.76, and 2.58 Wm−1K−1, respectively. The thermal conductivities decreased with an increase in the ambient measurement temperature. This thermal property is similar to that of crystalline materials. Electron microscopy observations revealed the presence of nanocrystals embedded in the amorphous matrix of the IGZO films. The typical size of the nanocrystals was approximately 2–5 nm with the lattice distance of about 0.24–0.26 nm. These experimental results indicate that the nanocrystalline microstructure controls the heat conduction in the IGZO films.


2020 ◽  
Vol 15 (4) ◽  
pp. 463-467
Author(s):  
Soo-Young Kang ◽  
No-Won Park ◽  
Won-Yong Lee ◽  
Min-Sung Kang ◽  
Gil-Sung Kim ◽  
...  

Nanoscale superlattice thin films generally exhibit larger phonon and electron scattering at the interface in the direction of the cross-plane of the samples. Therefore, it is very important to further detailed study of especially phonon transport of the superlattice films. Here, we report temperature dependent thermal conductivity anisotropy in phonon transport of Bi2 Te3 /Bi0.5 Sb1.5 Te3 superlattice thin films at 200–500 K. Thermal conductivity of these thin films for in- and cross-plane thermal conductivities were determined to be approximately 0.74 and 0.4 W m–1 K–1 at 200–500 K, respectively, clearly indicating ∼185% suppression in- and cross-plane thermal conductivities of the superlattice thin films with a large anisotropic behavior. Such large anisotropy in the thermal conductivity can be attributed to enhanced phonon scattering occurring at the interface of the Bi2Te3 and Bi0.5Sb1.5Te3 layer.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012108
Author(s):  
E S Makarova ◽  
A V Novotelnova

Abstract Using the method of computer simulation, the uncertainty of measurements of the thermal conductivity of silicon, which is often used as substrates, and also thin films based on bismuth, is estimated. The influence of the application of an additional dielectric layer between the thermoelectric film and the resistive heater on the measurement results is shown.


Sign in / Sign up

Export Citation Format

Share Document