Investigation on Corrosion Base Characteristics and Deep Dehydration Technology of Micro-Droplets in Oil Pipelines

Author(s):  
Kai Guo ◽  
Yuling Lv ◽  
Limin He ◽  
Xiaoming Luo ◽  
Donghai Yang

Abstract Corrosion is an important cause of steel pipeline failure and oil leakage, especially local pitting corrosion in long distance crude oil pipelines. Deep dehydration is of great significance to pipeline anticorrosion, however, further experimental results show that it is very difficult to achieve deep dehydration by a single electric field. Recent studies have shown that the particle size change of dispersed phase for the emulsion with large droplets after electromagnetic synergistic treatment is more obvious than that of a single electric field. In this study, the effect of micro-droplets on corrosion of oil pipelines are revealed. The role of micro-droplets in the process of microbial corrosion and electrochemical corrosion in a strong or weak acid solution for oil pipelines was summarized. A structural model of on-line tubular electromagnetic synergistic intensification coalescing device was established. The size change of particle of the dispersed phase in emulsions was studied. Crude oil and water were used as experimental materials, and the particle size distribution of dispersed phase in emulsions was tested by the evaluation system. The results showed that mean radius, d10 and d50 of water droplets in emulsion treated by electromagnetic synergism are larger than those treated by a single electric field. Strengthening droplets coalescence by electromagnetic synergism is also effective on emulsions whose particle size of the dispersed phase is less than 100μm. The role of micro-droplets in pitting corrosion is summarized based on corrosion channels. In the process of microbial corrosion and electrochemical corrosion in strong or weak acid solution, the role of water is presented in two aspects like participating in the reaction and providing ion electron transmission media. Analogous to culture medium, micro water droplets can be called corrosion medium for pitting corrosion in long-distance crude oil pipelines. A structural model of on-line tubular electromagnetic synergistic intensification coalescing device was established, including an electric field generation device and a magnetic field excitation component with orthogonal distribution and synchronous synergy. And emulsions are treated by electric and magnetic fields while flowing through the medium channel. The particle size change of dispersed phase in emulsions with average particle size of dispersed phase less than 100μm was experimental studied. It is found that mean radius, d10 and d50 of water droplets in emulsion treated by electromagnetic synergism are larger than that by a single electric field. Therefore, electromagnetic synergism can further enhance the dehydration depth compared with a single electric field.

Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4325
Author(s):  
Zhihua Wang ◽  
Yunfei Xu ◽  
Yi Zhao ◽  
Zhimin Li ◽  
Yang Liu ◽  
...  

Wax deposition during crude oil transmission can cause a series of negative effects and lead to problems associated with pipeline safety. A considerable number of previous works have investigated the wax deposition mechanism, inhibition technology, and remediation methods. However, studies on the shearing mechanism of wax deposition have focused largely on the characterization of this phenomena. The role of the shearing mechanism on wax deposition has not been completely clarified. This mechanism can be divided into the shearing dispersion effect caused by radial migration of wax particles and the shearing stripping effect caused by hydrodynamic scouring. From the perspective of energy analysis, a novel wax deposition model was proposed that considered the flow parameters of waxy crude oil in pipelines instead of its rheological parameters. Considering the two effects of shearing dispersion and shearing stripping coexist, with either one of them being the dominant mechanism, a shearing dispersion flux model and a shearing stripping model were established. Furthermore, a quantitative method to distinguish between the roles of shearing dispersion and shearing stripping in wax deposition was developed. The results indicated that the shearing mechanism can contribute an average of approximately 10% and a maximum of nearly 30% to the wax deposition process. With an increase in the oil flow rate, the effect of the shearing mechanism on wax deposition is enhanced, and its contribution was demonstrated to be negative; shear stripping was observed to be the dominant mechanism. A critical flow rate was observed when the dominant effect changes. When the oil flow rate is lower than the critical flow rate, the shearing dispersion effect is the dominant effect; its contribution rate increases with an increase in the oil flow temperature. When the oil flow rate is higher than the critical flow rate, the shearing stripping effect is the dominant effect; its contribution rate increases with an increase in the oil flow temperature. This understanding can be used to design operational parameters of the actual crude oil pipelines and address the potential flow assurance problems. The results of this study are of great significance for understanding the wax deposition theory of crude oil and accelerating the development of petroleum industry pipelines.


SPE Journal ◽  
2021 ◽  
pp. 1-29
Author(s):  
C. Zhang ◽  
J. J. Zhang ◽  
C. B. Ma ◽  
G. E. Korobkov

Summary Partial blockages form on the inner wall of the crude-oil pipelines as a result of asphaltene precipitation, scale deposition, and so forth. If not controlled and rehabilitated periodically, these partial blockages can have a serious adverse effect on the efficiency, economy, and safety of the operation of the pipeline. Before each rehabilitation operation, the detection of the local flow-condition deterioration (change in diameter) is necessary for efficiency and economy considerations, especially for long-distance subsea crude-oil pipelines. Most conventional detection techniques require the installment of detecting devices along the pipeline. However, they are economically expensive and even technically impossible for pipelines in operation. The present work focuses on an economically efficient technique that can realize remote nonintrusive measurement (i.e., the pressure-wave technique). The purpose of our research is to develop a method for calibrating multiple irregular partial blockages inside the liquid pipe by using the pressure response in the time domain at certain measuring points along the pipe under the transient state. The method involves the direct problem and the inverse problem. The direct problem is the simulation of the transient flow in the liquid pipe with single or multiple partial blockages. A second-order direct problem solver is developed in the framework of the Godunov-typefinite-volume method (FVM). The inverse problem is to determine the partial-blockage distribution by using the pressure response at the measuring point under transient conditions. Our algorithm to solve the inverse problem comprises analytical evaluation and optimization. The analytical evaluation provides a reliable search space for the following optimization procedure, and thus effectively alleviates the local optimum problem. Numerical results demonstrate the efficiency and accuracy of proposed methods for solving the direct and inverse problems.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Pengyu Wang ◽  
Wei Wang ◽  
Jing Gong ◽  
Yuanxin Zhou ◽  
Wei Yang

In the study of the foundation of the oil / water wax deposition experiment, the emulsification characteristics of crude oil emulsion with high wax content have gradually become the hot research area. In the current research of emulsification characteristics of oil/water emulsion, the attention has been focused on the study of the effects of water cut, stirring speed, particle size distribution on the viscosity of waxy crude oil emulsion in the experiment, in which heavy oil and simulated oil are adopted as the working fluids. In this study, the emulsion with different water cut and stirred by different speed was prepared under three different temperature conditions, the temperature above the wax appearance temperature (WAT), near the WAT, and below the WAT. The polarization microscope and rotary viscometer were applied to measure the effects of the particle size of the dispersed phase and waxy crystal distribution on the oil/water emulsion viscosity. The results suggest that preparing the temperature for crude oil emulsion with high wax content has an important influence on the emulsion microstructure. This study lays the foundation for further study of oil/water two phase dynamic wax deposition experiments.


2011 ◽  
Vol 301-303 ◽  
pp. 610-616 ◽  
Author(s):  
Guo Qun Chen ◽  
Ming Hua Zhao ◽  
Bo Xu

For a new buried heated oil pipeline, the temperature field of the surrounded soil is natural. Therefore the temperature is usually low in this case. For the waxy crude oil whose pour point is higher than the ground temperature, if the new pipeline transports such oil directly after heating, crude oil may gel in pipeline because its temperature decrease dramatically due to heat exchange between the fluid and the surrounded soil. Hence, in practical situation hot water is often used to warm up the pipelines for most of the new long-distance buried pipelines. Crude oil transportation is determined after the soil temperature field around the pipeline is sufficiently high and the inlet water temperature meets the requirement.


2016 ◽  
pp. 777
Author(s):  
Jennifer Hocking

In the past few years, a number of long-distance oil pipelines have been proposed in Canada — Northern Gateway, the Trans Mountain Expansion, Keystone, and the Energy East Project. This article describes the criteria used by the National Energy Board in approving the allocation of capacity in oil pipelines to firm service contracts while requiring that a reasonable percentage of capacity is allocated for uncommitted volumes (common carriage). It explains the economic theory related to regulation of access to major oil pipelines. It reviews and analyzes relevant NEB decisions, which show that the NEB supports well-functioning competitive markets, but will exercise its discretion to resolve complaints where markets are not functioning properly. The article also explains the economic significance of the proposed long-distance oil pipelines to Canada and Alberta despite the current low price of crude oil. The article concludes with recommendations for a written NEB policy regarding access to capacity in oil pipelines.


2010 ◽  
Vol 34 (12) ◽  
pp. 1962-1968 ◽  
Author(s):  
Antonio E. Bresciani ◽  
Candido F.X. Mendonça ◽  
Rita M.B. Alves ◽  
Claudio A.O. Nascimento

2014 ◽  
Vol 4 (2) ◽  
pp. 106-112
Author(s):  
Anita Shrivastava ◽  
Andrea Burianova

This study aimed to explore the relationships between attachment styles, proximity, and relational satisfaction. This was achieved by assessing a distinct type of long distance romantic relationship of flying crews, compared with proximal (non-flying crew) romantic relationships. The responses of 139 expatriate professionals revealed significant associations between proximity and anxious and avoidant attachment dimensions. The role of the avoidant dimension in comparison with that of the anxious dimension was found to be a significant predictor of relational satisfaction. This study contributes significantly toward addressing the role of proximity and attachment in relational satisfaction in a new context of geographic separation.


1976 ◽  
Vol 36 (01) ◽  
pp. 037-048 ◽  
Author(s):  
Eric P. Brass ◽  
Walter B. Forman ◽  
Robert V. Edwards ◽  
Olgierd Lindan

SummaryThe process of fibrin formation using highly purified fibrinogen and thrombin was studied using laser fluctuation spectroscopy, a method that rapidly determines particle size in a solution. Two periods in fibrin clot formation were noted: an induction period during which no fibrin polymerization occurred and a period of rapid increase in particle size. Direct measurement of fibrin monomer polymerization and fibrinopeptide release showed no evidence of an induction period. These observations were best explained by a kinetic model for fibrin clot formation incorporating a reversible fibrinogen-fibrin monomer complex. In this model, the complex serves as a buffer system during the earliest phase of fibrin formation. This prevents the accumulation of free polymerizable fibrin monomer until an appreciable amount of fibrinogen has reacted with thrombin, at which point the fibrin monomer level rises rapidly and polymerization proceeds. Clinically, the complex may be a homeostatic mechanism preventing pathological clotting during periods of elevated fibrinogen.


Sign in / Sign up

Export Citation Format

Share Document