Geometry and Position Analysis of a Novel Class of Hybrid Manipulators

Author(s):  
Change-de Zhang ◽  
Shin-Min Song

Abstract This paper presents a novel class of hybrid manipulators composed of two serially connected parallel mechanisms, each of which has three degrees of freedom. The lower and upper platforms respectively control the position and orientation of the end-effector. The advantages of this type of hybrid manipulator are larger workspace (as compared with parallel manipulators) and better rigidity and higher load-carrying capability (as compared with serial manipulators). The closed-form solutions of the forward and inverse position analyses are discussed. For forward position analysis, it is shown that the resultant equation for the positional mechanism is an 8-th order, a 6-th order, a 4-th order, or a 2-nd order polynomial, depending on the geometry and joint types of the passive subchain, while for the orientational mechanism, it is an 8-th order, or a 2-nd polynomial depending on the geometry. For inverse position analysis, it is demonstrated that the positional and orientational mechanisms both possess analytical closed-form solutions.

1973 ◽  
Vol 95 (2) ◽  
pp. 533-540 ◽  
Author(s):  
D. Kohli ◽  
A. H. Soni

The mechanisms derived from the seven-link chains with five links in their two loops and having two degrees of freedom are examined for six synthesis problems. Using displacement matrices, closed form synthesis equations are derived. It is shown that three synthesis problems may be solved using the principle of linear superposition, and closed form solutions may be obtained. The other three synthesis problems involve highly nonlinear equations and must be solved numerically.


Robotica ◽  
2005 ◽  
Vol 24 (3) ◽  
pp. 373-376 ◽  
Author(s):  
Yongjie Zhao ◽  
Tian Huang ◽  
Zhiyong Yang

A new fast successive approximation algorithm for the solution of the inverse position analysis of a general serial manipulator is presented. With the algorithm, we can search out the inverse solution of the serial manipulator quickly under the desired precision when the position of the three non-collinear end effector points is given. The position analysis of the 7R redundant serial manipulator is illustrated in the literature as an example. The simulation results verify the efficiency of the proposed algorithm. Since the three non-collinear end effector points can be selected at random, the algorithm can be applied to any other type serial manipulator.


2005 ◽  
Vol 128 (1) ◽  
pp. 159-167 ◽  
Author(s):  
Ethan Stump ◽  
Vijay Kumar

This paper develops analytical techniques to delineate the workspace boundaries for parallel mechanisms with cables. In such mechanisms, it is not only necessary to solve the closure equations but it is also essential to verify that equilibrium can be achieved with non-negative actuator (cable) forces. We use tools from convex analysis and linear algebra to derive closed-form expressions for the workspace boundaries and illustrate the applications using planar and spatial examples.


Robotica ◽  
2003 ◽  
Vol 21 (6) ◽  
pp. 627-632 ◽  
Author(s):  
Raffaele Di Gregorio

Manipulators with 3-RSR topology are three-degree-of-freedom parallel manipulators that may be either spherical or mixed-motion manipulators. The inverse position analysis (IPA) and the workspace determination of 3-RSR manipulators are addressed by means of a new approach. The new approach is centered on a particular form of the closure equations called compatibility equations. The compatibility equations contain only the six coordinates (end-effector coordinates) which locates the end-effector pose (position and orientation) with respect to the frame, and the geometric constants of the manipulator. When the manipulator geometry is assigned, the common solutions of the compatibility equations are the end-effector coordinates which identify the end-effector poses belonging to the manipulator workspace. Moreover, they can be the starting point to easily solve the IPA. The presented compatibility equations can be also used to solve the position synthesis of the 3-RSR manipulator. This way of solving the position synthesis will demonstrate that only approximated solutions exist when more than eight end-effector poses are given.


2021 ◽  
Author(s):  
Angelica Ginnante ◽  
François Leborne ◽  
Stéphane Caro ◽  
Enrico Simetti ◽  
Giuseppe Casalino

Abstract The essential characteristics of machining robots are their stiffness and their accuracy. For machining tasks, serial robots have many advantages such as large workspace to footprint ratio, but they often lack the stiffness required for accurately milling hard materials. One way to increase the stiffness of serial manipulators is to make their joints using closed-loop or parallel mechanisms instead of using classical prismatic and revolute joints. This increases the accuracy of a manipulator without reducing its workspace. This paper introduces an innovative two degrees of freedom closed-loop mechanism and shows how it can be used to build serial robots featuring both high stiffness and large workspace. The design of this mechanism is described through its geometric and kinematic models. Then, the kinematic performance of the mechanism is analyzed, and a serial arrangement of several such mechanisms is proposed to obtain a potential design of a machining robot.


Author(s):  
Raffaele Di Gregorio

A novel type of parallel wrist (PW) is proposed which, differently from previously presented PWs, features a single-loop architecture and only one nonholonomic constraint. Due to the presence of a nonholonomic constraint, the proposed PW type is under-actuated, that is, it is able to control the platform orientation in a three-dimensional workspace by employing only two actuated pairs, one prismatic (P) and the other revolute (R); and it cannot perform tracking tasks. Position analysis and path planning of this novel PW are studied. In particular, all the relevant position analysis problems are solved in closed form, and, based on these closed-form solutions, a path-planning algorithm is built.


Author(s):  
Saeed Behzadipour ◽  
Robert Dekker ◽  
Amir Khajepour ◽  
Edmon Chan

The growing needs for high speed positioning devices in the automated manufacturing industry have been challenged by robotic science for more than two decades. Parallel manipulators have been widely used for this purpose due to their advantage of lower moving inertia over the conventional serial manipulators. Cable actuated parallel robots were introduced in 1980’s to reduce the moving inertia even further. In this work, a new cable-based parallel robot is introduced. For this robot, the cables are used not only to actuate the end-effector but also to apply the necessary kinematic constraints to provide three pure translational degrees of freedom. In order to maintain tension in the cables, a passive air cylinder is used to push the end-effector against the stationary platform. In addition to low moving inertia, the new design benefits from simplicity and low manufacturing cost by eliminating joints from the robot’s mechanism. The design procedure and the results of experiments will be discussed in the following.


2012 ◽  
Vol 588-589 ◽  
pp. 1664-1668
Author(s):  
Syam Sundar ◽  
Vijay S. Rathore ◽  
Manoj K. Sahi ◽  
V. Upendran ◽  
Anjan Kumar Dash

In this article‚ a new approach is presented to determine the various shapes of workspaces of 5 bar symmetric planar parallel manipulators. Here the shape of the workspace is determined by the number of ways the workspaces of the two serial manipulators intersect with each other. Geometric conditions are established in each case and area of each shape of workspace is determined in closed form. Singularity is another important consideration in the design of parallel manipulators. In this paper, an approach is presented to go through the singularity points using an automatic selective actuation mechanism. A prototype 5-bar planar manipulator is fabricated along with an automatic selective actuation mechanism demonstrating the manipulator going through the singularity points.


Sign in / Sign up

Export Citation Format

Share Document