scholarly journals Design and Kinematic Analysis of a Novel 2-DoF Closed-Loop Mechanism for the Actuation of Machining Robots

2021 ◽  
Author(s):  
Angelica Ginnante ◽  
François Leborne ◽  
Stéphane Caro ◽  
Enrico Simetti ◽  
Giuseppe Casalino

Abstract The essential characteristics of machining robots are their stiffness and their accuracy. For machining tasks, serial robots have many advantages such as large workspace to footprint ratio, but they often lack the stiffness required for accurately milling hard materials. One way to increase the stiffness of serial manipulators is to make their joints using closed-loop or parallel mechanisms instead of using classical prismatic and revolute joints. This increases the accuracy of a manipulator without reducing its workspace. This paper introduces an innovative two degrees of freedom closed-loop mechanism and shows how it can be used to build serial robots featuring both high stiffness and large workspace. The design of this mechanism is described through its geometric and kinematic models. Then, the kinematic performance of the mechanism is analyzed, and a serial arrangement of several such mechanisms is proposed to obtain a potential design of a machining robot.

2020 ◽  
pp. 1-22
Author(s):  
Merve Acer Kalafat ◽  
Hasan Sevinc ◽  
Shahrad Samankan ◽  
Atakan Altinkaynak ◽  
Zeynep Temel

Abstract In robotics, origami-based design methodology can be used to create small scale parallel mechanisms with easier assembly processes. Delta mechanisms are one of the famous parallel mechanism used mostly in pick and place operations due to their capability to reach high speeds and accelerations. In this work, we present a novel Delta mechanism fabricated with fully 2D layer by layer methods. In our design we have eliminated manual 3D processes in order to provide parallel movement of the links. We have designed a new flat parallelogram providing pure translations in X-Y-Z directions respecting to the conventional kinematic models for Delta mechanism. The assembly process is reduced to an only cut – laminate – repeat steps which are very basic operations in 2D. The kinematic performance of the mechanism has been analyzed using a 6 DoF position sensor placed on the end-effector. The mechanism has a 20x20x20 mm3 cubic stable workspace with a 17.5 mm radius circular footprint when it is completely flat. The tests were done for circular trajectories having 10 mm radius circles with different heights and circles with different radiuses in a specific height. Despite having no feedback control from the end effector, the mechanism was able to follow the trajectory with 1.5 mm RMS precision. We have also changed the materials of the flexible layers in passive links and presented the trajectory results of the end-effector showing how it effects the kinematic performance of the mechanism.


2017 ◽  
Vol 8 (1) ◽  
pp. 117-126 ◽  
Author(s):  
Bingxiao Ding ◽  
Yangmin Li ◽  
Xiao Xiao ◽  
Yirui Tang ◽  
Bin Li

Abstract. Flexure-based mechanisms have been widely used for scanning tunneling microscopy, nanoimprint lithography, fast servo tool system and micro/nano manipulation. In this paper, a novel planar micromanipulation stage with large rotational displacement is proposed. The designed monolithic manipulator has three degrees of freedom (DOF), i.e. two translations along the X and Y axes and one rotation around Z axis. In order to get a large workspace, the lever mechanism is adopted to magnify the stroke of the piezoelectric actuators and also the leaf beam flexure is utilized due to its large rotational scope. Different from conventional pre-tightening mechanism, a modified pre-tightening mechanism, which is less harmful to the stacked actuators, is proposed in this paper. Taking the circular flexure hinges and leaf beam flexures hinges as revolute joints, the forward kinematics and inverse kinematics models of this stage are derived. The workspace of the micromanipulator is finally obtained, which is based on the derived kinematic models.


Author(s):  
Change-de Zhang ◽  
Shin-Min Song

Abstract This paper presents a novel class of hybrid manipulators composed of two serially connected parallel mechanisms, each of which has three degrees of freedom. The lower and upper platforms respectively control the position and orientation of the end-effector. The advantages of this type of hybrid manipulator are larger workspace (as compared with parallel manipulators) and better rigidity and higher load-carrying capability (as compared with serial manipulators). The closed-form solutions of the forward and inverse position analyses are discussed. For forward position analysis, it is shown that the resultant equation for the positional mechanism is an 8-th order, a 6-th order, a 4-th order, or a 2-nd order polynomial, depending on the geometry and joint types of the passive subchain, while for the orientational mechanism, it is an 8-th order, or a 2-nd polynomial depending on the geometry. For inverse position analysis, it is demonstrated that the positional and orientational mechanisms both possess analytical closed-form solutions.


Author(s):  
Jungwon Yoon ◽  
Jeha Ryu

This paper proposes a new family of four degrees-of-freedom (dof) parallel mechanisms with two platforms and its application to a footpad device that can simulate the spatial motions of the human foot. The new mechanism consists of front and rear platforms, and three limbs. Two limbs with 6-dof serial joints (P-S-P-P) are attached to each platform and are perpendicular to the base plate, while the middle limb (Pe-Re-R or Pe-Pe-R) is attached to the revolute joint that connects the front and rear platforms. The middle limb is driven by the 2-dof driving mechanism that is equivalent active serial prismatic and revolute joints (Pe-Re), or prismatic and prismatic joints (Pe-Re) with two base-fixed prismatic actuators. Therefore, two new 4-dof parallel mechanisms with two platforms can generate pitch motion of each platform, and roll and heave motions (1T-3R) or pitch motion of each platform and two translational motions (2T-2R) at both platforms. Kinematic analyses of the 1T-3R mechanism were performed, including inverse and forward kinematics, and velocity analysis. Based on the 1T-3R mechanism, a footpad device was designed to generate foot trajectories for natural walking. Finally, simulations of the foot trajectories in the normal gait cycle were performed using the proposed footpad device.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Kristan Marlow ◽  
Mats Isaksson ◽  
Jian S. Dai ◽  
Saeid Nahavandi

Singularities are one of the most important issues affecting the performance of parallel mechanisms. A parallel mechanism with less than six degrees of freedom (6DOF) is classed as having lower mobility. In addition to input–output singularities, such mechanisms potentially suffer from singularities among their constraints. Furthermore, the utilization of closed-loop subchains (CLSCs) may introduce additional singularities, which can strongly affect the motion/force transmission ability of the entire mechanism. In this paper, we propose a technique for the analysis of singularities occurring within planar CLSCs, along with a finite, dimensionless, frame invariant index, based on screw theory, for examining the closeness to these singularities. The integration of the proposed index with existing performance measures is discussed in detail and exemplified on a prototype industrial parallel mechanism.


2015 ◽  
Vol 7 (4) ◽  
Author(s):  
Yaobin Tian ◽  
Yan-An Yao ◽  
Jieyu Wang

In this paper, a rolling mechanism constructed by a spatial 8-bar linkage is proposed. The eight links are connected with eight revolute joints, forming a single closed-loop with two degrees of freedom (DOF). By kinematic analysis, the mechanism can be deformed into planar parallelogram or spherical 4-bar mechanism (SFM) configuration. Furthermore, this mechanism can be folded onto a plane at its singularity positions. The rolling capability is analyzed based on the zero-moment-point (ZMP) theory. In the first configuration, the mechanism can roll along a straight line. In the second configuration, it can roll along a polygonal region and change its rolling direction. By alternatively choosing one of the two configurations, the mechanism has the capability to roll along any direction on the ground. Finally, a prototype was manufactured and some experiments were carried out to verify the functions of the mechanism.


Author(s):  
Xianwen Kong ◽  
Damien Chablat ◽  
Stéphane Caro ◽  
Jingjun Yu ◽  
Clément Gosselin

A kinematically redundant parallel manipulator (PM) is a PM whose degrees-of-freedom (DOF) are greater than the DOF of the moving platform. It has been revealed in the literature that a kinematically redundant PM has fewer Type II kinematic singular configurations (also called forward kinematic singular configurations, static singular configurations or parallel singular configurations) and/or constraint singular configurations than its non-redundant counterparts. However, kinematically redundant PMs have not been fully explored, and the type synthesis of kinematically redundant PMs is one of the open issues. This paper deals with the type synthesis of kinematically redundant 3T1R PMs (also called SCARA PMs or Schoenflies motion generators), in which the moving platform has four DOF with respect to the base. At first, the virtual-chain approach to the type synthesis of kinematically redundant parallel mechanisms is recalled. Using this approach, kinematically redundant 3T1R PMs are constructed using several compositional units with very few mathematical derivations. The type synthesis of 5-DOF 3T1R PMs composed of only revolute joints is then dealt with systematically. This work provides a solid foundation for further research on kinematically redundant 3T1R PMs.


Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 72 ◽  
Author(s):  
Stefan Schulz

In this paper, we experimentally evaluate the performance of a sensor concept for solving the direct kinematics problem of a general planar 3-RPR parallel mechanism by using solely the linear actuators’ orientations. At first, we review classical methods for solving the direct kinematics problem of parallel mechanisms and discuss their disadvantages on the example of the general planar 3-RPR parallel mechanism, a planar parallel robot with two translational and one rotational degrees of freedom, where P denotes active prismatic joints and R denotes passive revolute joints. In order to avoid these disadvantages, we present a sensor concept together with an analytical formulation for solving the direct kinematics problem of a general planar 3-RPR parallel mechanism where the number of possible assembly modes can be significantly reduced when the linear actuators’ orientations are used instead of their lengths. By measuring the orientations of the linear actuators, provided, for example, by inertial measurement units, only two assembly modes exist. Finally, we investigate the accuracy of our direct kinematics solution under static as well as dynamic conditions by performing experiments on a specially designed prototype. We also investigate the solution formulation’s amplification of measurement noise on the calculated pose and show that the Cramér-Rao lower bound can be used to estimate the lower bound of the expected variances for a specific pose based exclusively on the variances of the linear actuators’ orientations.


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Mats Isaksson ◽  
Matthew Watson

Parallel manipulators possess several advantages compared to serial robots, including the possibilities for high acceleration and high accuracy positioning of the manipulated platform. However, the majority of all proposed parallel mechanisms suffer from the combined drawbacks of a small positional workspace in relation to the manipulator footprint and a limited range of rotations of the manipulated platform. This paper analyses a recently proposed six-degrees-of-freedom parallel mechanism that aims to address both these issues while maintaining the traditional advantages of a parallel mechanism. The investigated manipulator consists of six actuated coaxial upper arms that are allowed to rotate indefinitely around a central cylindrical base column and a manipulated platform where five of the six joint positions are collinear. The axis-symmetric arm system leads to an extensive positional workspace while the proposed link arrangement increases the range of achievable platform rotations. The manipulator workspace is analyzed in detail and two methods to further increase the rotational workspace are presented. It is shown that the proposed manipulator has the possibility of a nonsingular transition of assembly modes, which extends the usable workspace. Furthermore, it is demonstrated how an additional kinematic chain can be utilized to achieve infinite platform rotation around one platform axis. By introducing additional mobility in the manipulated platform, a redundantly actuated mechanism is avoided.


Author(s):  
Christine Vehar ◽  
Sridhar Kota ◽  
Robert Dennis

The paper introduces tape springs as elements of fully compliant mechanisms. The localized folds of tape springs serve as compact revolute joints, with a very small radius and large range of motion, and the unfolded straight segments serve as links. By exploiting a tape spring’s ability to function as both links and joints, we present a new method of realizing fully compliant mechanisms with further simplification in their construction. Tape springs, typically found in carpenter tape rules, are thin-walled strips having constant thickness, zero longitudinal curvature, and a constant transverse curvature. The paper presents a closed-loop tape spring mechanism. By representing its folds as idealized revolute joints and its variable length links as sliding joints connecting rigid links, we present a modified Gruebler’s equation to determine its kinematic and idle degrees of freedom. To realize practical utility of tape spring mechanisms, we propose a simple actuation scheme incorporating shape memory alloy (SMA) wire actuators and successfully demonstrate its performance with a proof-of-concept prototype. The paper also presents potential applications for actuated tape spring mechanisms including a large displacement translational mechanism, planar positioning mechanisms, bi-stable, multi-stable, and variable stiffness mechanisms.


Sign in / Sign up

Export Citation Format

Share Document