Error Localization Methods With Static Modes and Thermographic Data

Author(s):  
F. Thouverez ◽  
L. Humbert ◽  
L. Jezequel

Abstract The goal of updating methods in dynamic is to improve the finite element models by means of experimental tests. In fact, we try to estimate a better value of the mass (M) and stiffness (K) matrices. Several ways are possible to complete the updating of M and K : - Global techniques which consist to correct the entire matrices without keeping a physical meaning of the M and K modifications. This approach transforms the finite element “knowledge” models into “representation” models which are more accurate in the measured frequency range but don’t represent the actual structure. This kind of method has been developed first by Baruch (1978) and Berman (1979) and improved by lots of researchers (Kabe, 1985 and Wei, 1990). - Local techniques try to compute the best values of the physical parameters defined on each element of the modelling. This method is a very stiff one since the optimization of the numerical modes is required over a very large number of parameters. To be able to use this approach we must select only the elements which must be modified to reduce the size of the optimization problem. To do so, we will apply the localization methods. In this paper we will present two ways to locate the modelling errors as well as a new approach based on thermographic, data. Each localization methods will be tested and we will show the influence of the expansion technique and the improvement due to the use of the static modes. The thermographic measurements give us a large number of data but partial because the information gathered by the camera concernes only the sum of the principal strains (Olivier et al, 1988 and Ryall et al, 1992). But the advantages of this method are the number of points which is important and the nature of the data which is a strain information (very sensitive to the local defaults of modelling).

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
F. Cascetta ◽  
F. Caputo ◽  
A. De Luca

This paper deals with the development of a numerical model, based on the Finite Element (FE) theory for the prediction of the squeal frequency of a railway disc brake. The analytical background has been discussed and presented, as well as the most efficient methods for evaluating the system stability; the attention has been paid particularly to the complex eigenvalues method, which has been adopted within this paper to investigate the railway disc brake system. Numerical results have been compared with measurements from experimental tests in order to validate the proposed numerical approach. At the end of this work, a sensitivity analysis, aimed at understanding the effects of some physical parameters influencing the stability of the brake system and the squeal propensity, has been carried out.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Xingjian Dong ◽  
Zhike Peng ◽  
Wenming Zhang ◽  
HongXing Hua ◽  
Guang Meng

To control vibration of a piezoelectric smart structure, a controller is usually designed based on a reduced order model (ROM) of the system. When such a ROM based controller operates in closed loop with the actual structure, spillover phenomenon occurs because the unmodeled dynamics, which are not included in ROM, will be excited. In this paper, a new approach aiming at investigating spillover effects in ANSYS software is presented. By using the ANSYS parametric design language (APDL), the ROM based controller is integrated into finite element model to provide an accurate representation of what will happen when the controller is connected to the real plant. Therefore, the issues of spillover effects can be addressed in the closed loop simulation. Numerical examples are presented for investigating spillover effects of a cantilever piezoelectric plate subjected to various types of loading. The importance of considering spillover effects in closed loop simulation of piezoelectric smart structures is demonstrated. Moreover, the present study may provide an efficient method especially beneficial for preliminary design of piezoelectric smart structure to evaluate the performance of candidate control laws in finite element environment considering spillover effects.


2020 ◽  
Vol 3 (1) ◽  
pp. 57-70
Author(s):  
Stefan Berczyński ◽  
Paweł Dunaj ◽  
Zenon Grządziel

AbstractA new approach has been taken to the problem of straight and bent bar buckling, where bar buckling is considered as a function of axial displacement of one end. It was assumed that the length of a bar being buckled at any instant of buckling is the same as that of a straight bar, regardless of the size of axial displacement of one end of the bar. Based on energy equations, a formula was derived for the value of axial displacement of one bar end or buckling amplitude in the middle of bar length as a function of compressive force. The established relationships were confirmed by simulation tests using the finite element software Midas NFX and by experimental tests.


Author(s):  
Francisco Lamas ◽  
Miguel A. M. Ramirez ◽  
Antonio Carlos Fernandes

Flow Induced Motions are always an important subject during both design and operational phases of an offshore platform life. These motions could significantly affect the performance of the platform, including its mooring and oil production systems. These kind of analyses are performed using basically two different approaches: experimental tests with reduced models and, more recently, with Computational Fluid Dynamics (CFD) dynamic analysis. The main objective of this work is to present a new approach, based on an analytical methodology using static CFD analyses to estimate the response on yaw motions of a Tension Leg Wellhead Platform on one of the several types of motions that can be classified as flow-induced motions, known as galloping. The first step is to review the equations that govern the yaw motions of an ocean platform when subjected to currents from different angles of attack. The yaw moment coefficients will be obtained using CFD steady-state analysis, on which the yaw moments will be calculated for several angles of attack, placed around the central angle where the analysis is being carried out. Having the force coefficients plotted against the angle values, we can adjust a polynomial curve around each analysis point in order to evaluate the amplitude of the yaw motion using a limit cycle approach. Other properties of the system which are flow-dependent, such as damping and added mass, will also be estimated using CFD. The last part of this work consists in comparing the analytical results with experimental results obtained at the LOC/COPPE-UFRJ laboratory facilities.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1468
Author(s):  
Luis Nagua ◽  
Carlos Relaño ◽  
Concepción A. Monje ◽  
Carlos Balaguer

A soft joint has been designed and modeled to perform as a robotic joint with 2 Degrees of Freedom (DOF) (inclination and orientation). The joint actuation is based on a Cable-Driven Parallel Mechanism (CDPM). To study its performance in more detail, a test platform has been developed using components that can be manufactured in a 3D printer using a flexible polymer. The mathematical model of the kinematics of the soft joint is developed, which includes a blocking mechanism and the morphology workspace. The model is validated using Finite Element Analysis (FEA) (CAD software). Experimental tests are performed to validate the inverse kinematic model and to show the potential use of the prototype in robotic platforms such as manipulators and humanoid robots.


2018 ◽  
Vol 18 (02) ◽  
pp. 1850017 ◽  
Author(s):  
Iwona Adamiec-Wójcik ◽  
Łukasz Drąg ◽  
Stanisław Wojciech

The static and dynamic analysis of slender systems, which in this paper comprise lines and flexible links of manipulators, requires large deformations to be taken into consideration. This paper presents a modification of the rigid finite element method which enables modeling of such systems to include bending, torsional and longitudinal flexibility. In the formulation used, the elements into which the link is divided have seven DOFs. These describe the position of a chosen point, the extension of the element, and its orientation by means of the Euler angles Z[Formula: see text]Y[Formula: see text]X[Formula: see text]. Elements are connected by means of geometrical constraint equations. A compact algorithm for formulating and integrating the equations of motion is given. Models and programs are verified by comparing the results to those obtained by analytical solution and those from the finite element method. Finally, they are used to solve a benchmark problem encountered in nonlinear dynamic analysis of multibody systems.


Author(s):  
Chen Xin ◽  
Qin Ye ◽  
Yuan Xiguang ◽  
Zhang Ping ◽  
Sun Jian

Abstract According to the real situation, a new method of updating the finite element model (FEM) of a combined structure step by step is proposed in this paper. It is assumed that there are two types of error when establishing the FEMs. One of them results from the simplifications, in fact, it is severe for complicated structures, which usually assume many simplifications; the other is from the process of identifying structural joint parameters. For this reason, it is recommended that the FEM should be established in two stages. At the first stage, the local physical parameters relating with the simplifications are corrected by using the dynamic test data of the corresponding substructures. Then, the structural joint parameters that link the substructures are corrected by the dynamic test data of the combined structure as a whole. The updating formula is presented and proved, and its algorithm is also described. And the experimental results show that the efficiency and accuracy of the proposed method are quite satisfactory.


Author(s):  
Régis Dufour ◽  
Alain Berlioz ◽  
Thomas Streule

Abstract In this paper the stability of the lateral dynamic behavior of a pinned-pinned, clamped-pinned and clamped-clamped beam under axial periodic force or torque is studied. The time-varying parameter equations are derived using the Rayleigh-Ritz method. The stability analysis of the solution is based on Floquet’s theory and investigated in detail. The Rayleigh-Ritz results are compared to those of a finite element modal reduction. It shows that the lateral instabilities of the beam depend on the forcing frequency, the type of excitation and the boundary conditions. Several experimental tests enable the validation of the numerical results.


Sign in / Sign up

Export Citation Format

Share Document