SDAMP: Software for the Design and Analysis of Mechanical Presses

Author(s):  
Herbert E. Stumph ◽  
Andrew P. Murray

Abstract In this paper we introduce the MATLAB-based SDAMP (pronounced stamp) software for the analysis and synthesis of several mechanical press linkages. These linkages include the slider-crank and the four six-bar mechanisms formed by attaching a drag-link, crank-rocker, crank-shaper or Whitworth mechanism to a slider-crank. SDAMP performs four basic tasks: guided layout, kinematic analysis, mechanism refine and kinematic synthesis. Guided layout leads the user through joint selection to ensure a functioning mechanism. Kinematic analysis displays the position, velocity, acceleration and jerk of the sliding output versus the rotation of the input link. Mechanism refine allows the user to vary the geometry of an existing mechanism towards the goal of achieving a desired kinematic analysis. Lastly, kinematic synthesis determines the set of defect-free slider-cranks capable of achieving four precision points. All of these capabilities are integrated through a host of GUI driven MATLAB files in SDAMP.

Author(s):  
Chung-Ching Lee ◽  
Hong-Sen Yan

Abstract Based on matrix algebra, we derive the general analytical kinematic solutions of Type II movable spatial 6R mechanism with three adjacent parallel axes. This 6R mechanism was previously identified by the authors, and one of its special form is proposed as the retracting and wheel twisting mechanism for aircraft landing gears. A graphical synthesis technique by descriptive geometry is presented for the kinematic synthesis of the landing gear mechanism. A numerical example is given, and the mobility of this design is verified by computer animation of motions.


Author(s):  
Mazhar Ul Haq ◽  
Zhao Gang ◽  
Fazl E. Ahad ◽  
Anees Ur Rehman ◽  
Muhammad Hussain

In this paper, inverse kinematic analysis of a proposed three link mechanism of a bio-inspired micro scanning device towed underwater by a surface vessel to actuate its aileron fins for its depth control and for its stabilization against roll is performed. Mechanism is actuated by IPMC actuators. To speed up the design verification process, computer aided simulations are used to perform motion analysis of the proposed IPMC actuated mechanism through Pro/Mechanism tool. Inverse kinematic analysis is performed to find out the joint variables of the mechanism to realize fin actuation along desired path. Displacements, velocities and accelerations of the links constructing mechanism are found out to establish their interrelationship. Results are analysed for the study of mechanism efficacy and for sizing the IPMC actuators. This paper contributes to introduce a new approach of virtual prototyping using advanced simulation tools for analysis and design verification of IPMC actuated mechanisms for biomimetic applications before moving into functional prototype stage.


Author(s):  
Kambiz Farhang ◽  
Partha Sarathi Basu

Abstract Approximate kinematic equations are developed for the analysis and design of three-input, eight-bar mechanisms driven by relatively small cranks. Application of a method in which an output link is presumed to be comprised of a mean and a perturbational motions, along with the vector loop approach facilitates the derivation of the approximate kinematic equations. The resulting constraint equations are, (i) in the form of a set of four nonlinear equations relating the mean link orientations, and (ii) a set of four linear equations in the unknown perturbations (output link motions). The latter set of equations is solved, symbolically, to obtain the output link motions. The approximate equations are shown to be effective in the synthesis of three-input, small-crank mechanisms.


1995 ◽  
Vol 117 (B) ◽  
pp. 71-79 ◽  
Author(s):  
M. Raghavan ◽  
B. Roth

Problems in mechanisms analysis and synthesis and robotics lead naturally to systems of polynomial equations. This paper reviews the state of the art in the solution of such systems of equations. Three well-known methods for solving systems of polynomial equations, viz., Dialytic Elimination, Polynomial Continuation, and Grobner bases are reviewed. The methods are illustrated by means of simple examples. We also review important kinematic analysis and synthesis problems and their solutions using these mathematical procedures.


2011 ◽  
Vol 31 (12) ◽  
pp. 1242-1243
Author(s):  
A. M. Khalilov ◽  
V. I. Gasanov

2021 ◽  
Author(s):  
Asok Kumar Mallik ◽  
Amitabha Ghosh ◽  
Günter Dittrich

2016 ◽  
Vol 21 (3) ◽  
Author(s):  
ANTONESCU PĂUN ◽  
UNGUREANU LIVIU-MARIAN ◽  
BREZEANU COSTANTIN

This paper is representing a continuing research of the doctoral thesis "Geometrical analysis and synthesis of mechanisms in the electrotechnical field". Using two Mathcad programs as mathematics analysis software and Solidworks as graphical analysis software it is dimensioned the new kinematics scheme of the high voltage V mechanism. Kinematic analysis is based on the mathematical model presented in the doctoral thesis mentioned above and graphical modeling and analysis is conducted to compare and complete the research regarding the V mechanism triadic chain 5R + T type.


Author(s):  
Ting-Li Yang ◽  
Fang-Hua Yao ◽  
Ming Zhang

Abstract This paper presents a systematical comparative study of various modular methods based on the different module types: basic kinematic chains (BKCs), single opened chains (SOCs), loops (or a tree and co-tree), links-joints, etc. for analysis and synthesis of structure, kinematics and dynamics of planar linkages. The basic idea is that any linkage can be divided into (or built up by) some modular components in sequence, and based on the component constraints and network entirty constraints of the linkage, the unified modular approaches have been used for analysis and synthesis. In systematical comparative study, the main issues of a modular method have been discussed, such as: the topological characteristics revealed via different module types; the dimension of a set of kinematic equations; the automated generation and solution of kinematic equations; the dimension and automated generation of dynamical equations, and computation complexity for generating and solving dynamical equation; the automated generation of structural analysis and type synthesis; the generation of kinematic synthesis equations etc.. This paper gives a summary of the use of modular techniques for analyzing and synthesizing planar linkages in the recently thirty years. This comparative study includes two parts: Part I-modular structural analysis and modular kinematic analysis; Part II-modular dynamic analysis, modular structural synthesis and modular kinematic synthesis. This paper is the second part.


Sign in / Sign up

Export Citation Format

Share Document