Virtual Prototyping Based Design Optimization of PEM Fuel Cell Gas Delivery Plates

Author(s):  
Rong Zheng ◽  
Zuomin Dong

Abstract Gas delivery plates are key components for a Proton Exchange Membrane (PEM) fuel cell. The unique functions of these plates impose special requirements on their strength, conductivity and electro-chemistry stability. Cost reduction of these plates can greatly facilities the commercialization of PEM fuel cell, the promising zero emission power plant for the future. In this work, a virtual prototyping study on PEM fuel cell gas delivery plate is carried out. Solid modeling and mathematical modeling are used to form virtual prototypes of the gas delivery plates. Computational fluid dynamic (CFD) analysis and nonlinear finite element analysis (FEA) on plate structure and flow field properties are used to test the performance of the designed plates and to guide the design optimization. The research focuses on the new fuel cell plate designs that use polymer composite material to form flow field channels. The method of virtual prototyping based design optimization is discussed using a real fuel cell plate design example. This study provides guidelines to fuel cell plate development and demonstrates a new design approach.

2012 ◽  
Vol 488-489 ◽  
pp. 1219-1223 ◽  
Author(s):  
Shan Jen Cheng ◽  
Jr Ming Miao ◽  
Chang Hsien Tai

The effect of pressure drop and the flow-field of inhomogeneous transport of reactions gas are two important issues for bipolar flow channel design in proton exchange membrane fuel cell (PEMFC). A novel design through the imitation of biological development of the topology distribution of fractal tree-liked network channel is the main topic of this research. The effects of different Reynolds numbers and stoichiometric mass flow rate of reaction gas on the flow field distribution of tree-like channels were investigated by three-dimensional computational fluid dynamic analysis. According to numerical simulations, the fractal tree-liked network channel would have an excellent performance on the uniformity of multi-branching flow distribution and lower pressure drop along channels. The new type of fractal tree-liked bionic flow channel network design will be applied to assist in the experimental reference for improving the performance of fuel cell stack system in PEMFC for future.


2014 ◽  
Vol 592-594 ◽  
pp. 1728-1732 ◽  
Author(s):  
M. Muthukumar ◽  
P. Karthikeyan ◽  
V. Lakshminarayanan ◽  
A.P. Senthil Kumar ◽  
M. Vairavel ◽  
...  

The geometrical and flow parameters are governing the performance of the Proton Exchange Membrane Fuel Cell (PEMFC). The flow channels are used for distributing the reactants uniformly throughout the active area of fuel cell. Among different flow field designs, the serpentine flow field can give better performance to the PEM fuel cell. This paper numerically investigates the effects of the serpentine flow field with different number of passes. The 2 pass, 3 pass and 4 pass serpentine flow field designs of same rib size and channel size were modelled and analyzed using commercially available software package. From the polarization curves and performance curves drawn using the numerical results, the performance of three flow channel designs were compared and the maximum power densities of each design were found


Author(s):  
J. P. Owejan ◽  
T. A. Trabold ◽  
D. L. Jacobson ◽  
M. Arif ◽  
S. G. Kandlikar

Water is the main product of the electrochemical reaction in a proton exchange membrane (PEM) fuel cell. Where the water is produced over the active area of the cell, and how it accumulates within the flow fields and gas diffusion layers, strongly affects the performance of the device and influences operational considerations such as freeze and durability. In this work, the neutron radiography method was used to obtain two-dimensional distributions of liquid water in operating 50 cm2 fuel cells. Variations were made of flow field channel and diffusion media properties, to assess the effects on the overall volume and spatial distribution of accumulated water. Flow field channels with hydrophobic coating retain more water, but the distribution of a greater number of smaller slugs in the channel area improves fuel cell performance at high current density. Channels with triangular geometry retain less water than rectangular channels of the same cross-sectional area, and the water is mostly trapped in the two corners adjacent to the diffusion media. Also, it was found that cells constructed using diffusion media with lower in-plane gas permeability tended to retain less water. In some cases, large differences in fuel cell performance were observed with very small changes in accumulated water volume, suggesting that flooding within the electrode layer or at the electrode-diffusion media interface is the primary cause of the significant mass transport voltage loss.


2004 ◽  
Vol 126 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Borja Oyarza´bal ◽  
Michael R. von Spakovsky ◽  
Michael W. Ellis

The application of a decomposition methodology to the synthesis/design optimization of a stationary cogeneration proton exchange membrane (PEM) fuel cell system for residential applications is the focus of this paper. Detailed thermodynamic, economic, and geometric models were developed to describe the operation and cost of the fuel processing sub-system and the fuel cell stack sub-system. Details of these models are given in an accompanying paper by the authors. In the present paper, the case is made for the usefulness and need of decomposition in large-scale optimization. The types of decomposition strategies considered are conceptual, time, and physical decomposition. Specific solution approaches to the latter, namely Local-Global Optimization (LGO) are outlined in the paper. Conceptual/time decomposition and physical decomposition using the LGO approach are applied to the fuel cell system. These techniques prove to be useful tools for simplifying the overall synthesis/design optimization problem of the fuel cell system. The results of the decomposed synthesis/design optimization indicate that this system is more economical for a relatively large cluster of residences (i.e. 50). Results also show that a unit cost of power production of less than 10 cents/kWh on an exergy basis requires the manufacture of more than 1500 fuel cell sub-system units per year. Finally, based on the off-design optimization results, the fuel cell system is unable by itself to satisfy the winter heat demands. Thus, the case is made for integrating the fuel cell system with another system, namely, a heat pump, to form what is called a total energy system.


2010 ◽  
Vol 447-448 ◽  
pp. 559-563 ◽  
Author(s):  
Misran Erni ◽  
Wan Ramli Wan Daud ◽  
Edy Herianto Majlan

Flow field design has several functions that should perform simultaneously. Therefore, specific plate materials and channel designs are needed to enhance the performance of proton exchange membrane (PEM) fuel cell. Serpentine flow field design is one of the most popular channel configurations for PEM fuel cell system. Some configurations have been developed to improve the cell performance. This paper presents a review on serpentine flow field (SFF) design and its influence to PEM fuel cell performance based on some indicators of performance. The comparisons of SFF with other flow field designs are summarized. The results of some experimental and numerical investigations are also presented.


2016 ◽  
Vol 78 ◽  
pp. 01116
Author(s):  
Izzuddin Zaman ◽  
Bukhari Manshoor ◽  
Amir Khalid ◽  
Laily Azwati Mohamad Sterand ◽  
Shiau Wei Chan

2021 ◽  
Vol 98 ◽  
pp. 397-412
Author(s):  
Yan Cao ◽  
Hamdi Ayed ◽  
Samad Jafarmadar ◽  
Mir Ali Asghar Abdollahi ◽  
Ahmed Farag ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document