Input-Shaped Control of Gantry Cranes: Simulation and Curriculum Development

Author(s):  
Craig Forest ◽  
David Frakes ◽  
William Singhose

Abstract Knowledge of vibrations and controls has increased significantly by utilizing emerging computer capabilities. Engineering education should embrace this technology through computer simulations that predict and display the dynamic response of interesting systems. For example, manipulating payloads with an overhead gantry crane can be challenging due to the oscillations induced by the crane motion. The problem gets increasingly difficult when the work environment is cluttered with obstacles. This paper describes a simple input shaping solution to the vibration problem and shows how this problem and concept were integrated into the curriculum of an undergraduate system dynamics and controls course at the Georgia Institute of Technology. Furthermore, an educational tool is used to gather data on how crane operators attempt to navigate around obstacles. The results show that input shaping reduces the likelihood of collisions between the payload and obstacles, while at the same time allowing operators to be more aggressive in selecting navigation paths.

2000 ◽  
Author(s):  
David Frakes ◽  
Karen Grosser ◽  
Joel Fortgang ◽  
William Singhose

Abstract Manipulating payloads with overhead gantry cranes can be challenging due to the oscillations induced by the crane motion and by external disturbances. The problem gets increasingly difficult when the work environment is cluttered with obstacles that must be avoided. This paper examines this problem and investigates the role of the operator actions. To do this, simple mathematical models of the operator behavior and crane dynamics are developed. Furthermore, the effect of adding an input shaping controller to reduce oscillations is examined.


2009 ◽  
Vol 20 (02) ◽  
pp. 323-335 ◽  
Author(s):  
GUOSI HU ◽  
BO YU

Recently, there are many methods for constructing multi-wing/multi-scroll or hyperchaotic attractors; however, it has been noticed that the attractors with both multi-wing topological structure and hyperchaotic characteristic rarely exist. A new chaotic system, obtained by making the change on coordinate to the Hu chaotic system, can generate very complex attractors with four-wing topological structure and three positive Lyapunov exponents over a wide range of parameters. The influence of parameters varying to system dynamics is analyzed, computer simulations and bifurcation analysis is also verified in this paper.


2004 ◽  
Vol 10 (2) ◽  
pp. 269-289 ◽  
Author(s):  
Hanafy M Omar ◽  
Ali H Nayfeh

We have designed a controller based on gain-scheduling feedback to move a load from point to point within one oscillation cycle and without inducing large swings. The settling time of the system is taken to be equal to the period of oscillation of the load. This criterion enables us to calculate the controller feedback gains for varying load weight and cable length. First, we designed the controller for gantry cranes and then extended it to tower cranes by considering the coupling between the translational and rotational motions. Numerical simulations show that the controller is effective for reducing load oscillations and transferring the load in a reasonable time compared with that of optimal control. To experimentally validate the theory, we had to compensate for friction. To this end, we estimated the friction, then applied an opposite control action to cancel it. To estimate the friction force, we assumed a mathematical model, then we estimated the model coefficients using an off-line identification technique, the least-squares method. First, the process of identification was applied to a theoretical model of a dc motor with known friction coefficients. From this example, some guidelines and rules were deduced for the choice of the least-squares parameters. Then, the friction coefficients of the gantry crane model were estimated and validated.


2019 ◽  
Vol 11 (24) ◽  
pp. 7236 ◽  
Author(s):  
Anna-Karin Högfeldt ◽  
Anders Rosén ◽  
Christine Mwase ◽  
Ann Lantz ◽  
Lena Gumaelius ◽  
...  

The urgent need for actions in the light of the global challenges motivates international policy to define roadmaps for education on all levels to step forward and contribute with new knowledge and competencies. Challenge-Driven Education (CDE) is described as an education for Sustainable Development (ESD) approach, which aims to prepare students to work with global challenges and to bring value to society by direct impact. This paper describes, evaluates and discusses a three-year participatory implementation project of Challenge-driven education (CDE) within the engineering education at the University of Dar es Salam, UDSM, which has been carried out in collaboration with the Royal Institute of Technology, KTH in Stockholm. Conclusions are drawn on crucial aspects for engineering education change through the lens of Activity Theory (AT), where CDE is brought forward as a motivating ESD initiative for engineering faculty and students. Furthermore participatory co-creation is notably useful as it aims to embrace social values among the participants. Also, traditional organizational structures will need to be continuously negotiated in the light of the integration of more open-ended approaches in education.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Qi Zhang ◽  
Hongjin Dong ◽  
Mingjun Ling ◽  
Leyi Duan ◽  
Yuguang Wei

In order to improve the transshipment efficiency of transit containers in the port or the port-type railway network container freight station (PRNCS) with the condition that each transit container matches a railway flat-car, this paper studied the optimization of operation path of the rail mounted gantry crane (RMG) in the loading and unloading track for containers transshipped directly from highway to railway. Based on the basic model of TSP, the paper constructed the optimization model for the operation path of RMG, and designed the Ant Colony Algorithm (ACA) to solve it, and then obtained the operation scheme of RMG having the highest efficiency. Finally, the validity and correctness of the model and algorithm were verified by a case.


Sign in / Sign up

Export Citation Format

Share Document