UMASST: A New Teaching Tool for Stress State Transformation

Author(s):  
Mei Yu ◽  
Ian R. Grosse ◽  
Beverly Woolf ◽  
Mike Lindenmuth

This paper presents UMASST, the UMASS Stress State Transformation tutor. UMASST is a multimedia tutor based on active engagement of the learner and the use of visualization. The development of UMASST was informed by cognitive models of human reasoning, research on how people learn and computing technology. As a multimedia Director® and web-based application with knowledge-centered and assessment-centered modules, the UMASST targets improving understanding and mastery of transformation of stress states in mechanics of materials. In the knowledge-centered modules learners receive in-depth information on physical meaning and real-life applications of stress state transformations before their understanding is assessed in interactive workshops. The assessment-centered modules assist novices in assessing themselves on the subject domain. Assessment results show that the current efficacy of the UMASST tutor is above that of in-class lectures. Future work will include a learner-centered module customizing learning process by considering learners’ individual backgrounds.

2015 ◽  
Vol 31 (1) ◽  
pp. 20-30 ◽  
Author(s):  
William S. Helton ◽  
Katharina Näswall

Conscious appraisals of stress, or stress states, are an important aspect of human performance. This article presents evidence supporting the validity and measurement characteristics of a short multidimensional self-report measure of stress state, the Short Stress State Questionnaire (SSSQ; Helton, 2004 ). The SSSQ measures task engagement, distress, and worry. A confirmatory factor analysis of the SSSQ using data pooled from multiple samples suggests the SSSQ does have a three factor structure and post-task changes are not due to changes in factor structure, but to mean level changes (state changes). In addition, the SSSQ demonstrates sensitivity to task stressors in line with hypotheses. Different task conditions elicited unique patterns of stress state on the three factors of the SSSQ in line with prior predictions. The 24-item SSSQ is a valid measure of stress state which may be useful to researchers interested in conscious appraisals of task-related stress.


Healthcare ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 960
Author(s):  
Hudson D. Spangler ◽  
Miguel A. Simancas-Pallares ◽  
Jeannie Ginnis ◽  
Andrea G. Ferreira Zandoná ◽  
Jeff Roach ◽  
...  

The importance of visual aids in communicating clinical examination findings or proposed treatments in dentistry cannot be overstated. Similarly, communicating dental research results with tooth surface-level precision is impractical without visual representations. Here, we present the development, deployment, and two real-life applications of a web-based data visualization informatics pipeline that converts tooth surface-level information to colorized, three-dimensional renderings. The core of the informatics pipeline focuses on texture (UV) mapping of a pre-existing model of the human primary dentition. The 88 individually segmented tooth surfaces receive independent inputs that are represented in colors and textures according to customizable user specifications. The web implementation SculptorHD, deployed on the Google Cloud Platform, can accommodate manually entered or spreadsheet-formatted tooth surface data and allows the customization of color palettes and thresholds, as well as surface textures (e.g., condition-free, caries lesions, stainless steel, or ceramic crowns). Its current implementation enabled the visualization and interpretation of clinical early childhood caries (ECC) subtypes using latent class analysis-derived caries experience summary data. As a demonstration of its potential clinical utility, the tool was also used to simulate the restorative treatment presentation of a severe ECC case, including the use of stainless steel and ceramic crowns. We expect that this publicly available web-based tool can aid clinicians and investigators deliver precise, visual presentations of dental conditions and proposed treatments. The creation of rapidly adjustable lifelike dental models, integrated to existing electronic health records and responsive to new clinical findings or planned for future work, is likely to boost two-way communication between clinicians and their patients.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1495
Author(s):  
Dan-Andrei Șerban ◽  
Cosmin Marșavina ◽  
Alexandru Viorel Coșa ◽  
George Belgiu ◽  
Radu Negru

In this article, the yielding and plastic flow of a rapid-prototyped ABS compound was investigated for various plane stress states. The experimental procedures consisted of multiaxial tests performed on an Arcan device on specimens manufactured through photopolymerization. Numerical analyses were employed in order to determine the yield points for each stress state configuration. The results were used for the calibration of the Hosford yield criterion and flow potential. Numerical analyses performed on identical specimen models and test configurations yielded results that are in accordance with the experimental data.


2021 ◽  
Vol 13 (6) ◽  
pp. 3553
Author(s):  
Philippe Nimmegeers ◽  
Alexej Parchomenko ◽  
Paul De Meulenaere ◽  
Dagmar R. D’hooge ◽  
Paul H. M. Van Steenberge ◽  
...  

Multilevel statistical entropy analysis (SEA) is a method that has been recently proposed to evaluate circular economy strategies on the material, component and product levels to identify critical stages of resource and functionality losses. However, the comparison of technological alternatives may be difficult, and equal entropies do not necessarily correspond with equal recyclability. A coupling with energy consumption aspects is strongly recommended but largely lacking. The aim of this paper is to improve the multilevel SEA method to reliably assess the recyclability of plastics. Therefore, the multilevel SEA method is first applied to a conceptual case study of a fictitious bag filled with plastics, and the possibilities and limitations of the method are highlighted. Subsequently, it is proposed to extend the method with the computation of the relative decomposition energies of components and products. Finally, two recyclability metrics are proposed. A plastic waste collection bag filled with plastic bottles is used as a case study to illustrate the potential of the developed extended multilevel SEA method. The proposed extension allows us to estimate the recyclability of plastics. In future work, this method will be refined and other potential extensions will be studied together with applications to real-life plastic products and plastic waste streams.


1996 ◽  
Vol 270 (2) ◽  
pp. H750-H759 ◽  
Author(s):  
H. C. Han ◽  
Y. C. Fung

Residual strains were measured in the porcine aorta. Segments were cut from the aorta perpendicular to its longitudinal axis. Microdots of water-insoluble black ink were sprinkled onto the transverse sectional surface of the segments in the no-load state. The segments were then cut radially, and sectional zero-stress states were approached. The coordinates of selected microdots (2-20 microns) were digitized from photographs taken in the no-load state and the zero-stress state. Residual strains in the transverse section were calculated from the displacement of the microdots. The circumferential residual strains on the inner wall and outer wall were calculated from the circumferential lengths in the no-load state and the zero-stress state. Results show that the circumferential residual strain is negative (compressive) in the inner layer of the aortic wall and positive (tensile) in the outer layer, whereas the radial residual strain is tensile in the inner layer and compressive in the outer layer. This residual strain distribution reduces the stress concentration in the aorta under physiological load. The experimental results compared well with theoretical estimations of a cylindrical model. Regional difference of the residual strain exists and is significant (P < 0.01), e.g., the circumferential residual strains on the inner wall of the ascending, descending thoracic, and abdominal regions of the aorta are -0.133 +/- 0.019, -0.074 +/- 0.020, and -0.046 +/- 0.017 (mean +/- SD), respectively. More radial cuts of a segment produced no significant additional strains. This means that an aortic segment after one radial cut can be considered as the zero-stress state.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1627
Author(s):  
Jian Peng ◽  
Peishuang Zhou ◽  
Ying Wang ◽  
Qiao Dai ◽  
David Knowles ◽  
...  

The stress state has an important effect on the deformation and failure of metals. While the stress states of the axisymmetric notched bars specimens are studied in the literature, the studies on the flat metal specimen with inclined notch are very limited and the stress state is not clearly characterized in them. In this paper, digital image correlation and finite element simulations are used to study the distribution of strain and stress state, that is stress triaxiality and Lode angle parameter. Flat specimen with inclined notch was tested to extract the full field strain evolution and calculate stress state parameters at three locations: specimen centre, notch root and failure starting point. It is found that compared with the centre point and the notch root, the failure initiation point can better characterize the influence of the notch angle on the strain evolution. Conversely, the centre point can more clearly characterize the effect of the notch angle on stress state, since the stress states at the failure point and the notch root change greatly during the plastic deformation. Then the calculated stress state parameters of the flat metal specimen with inclined notch at the centre point are used in Wierzbicki stress state diagram to establish a relationship between failure mode and stress state.


2021 ◽  
Author(s):  
LeAnne Johnson ◽  
Maria Hugh ◽  
Andrea Ford ◽  
Danielle Dupuis ◽  
Kelsey Young ◽  
...  

<p></p><p>ENGAGE is in development as a web-based observation system with core features we believe will facilitate its use as a scalable assessment-to-action coaching and instructional support system in preschool classrooms. ENGAGE assesses adult interaction practices and children’s active engagement such that classroom teams receive data to inform their intentional design and delivery of embedded instruction that can be made more effective for children’s developmental needs through differentiation and intensification. For this study, we describe important precursors to evaluating other psychometric properties within an argument-based approach to validation. We used iterative cycles to gather evidence to refine and validate the content of our measurement targets (i.e., adult interaction practices and child active engagement) as well as constructs (i.e., groupings of practices by theorized mechanisms). Following two iterative rounds using online questionnaires, responses from participants representing intended users of ENGAGE generally demonstrated consistency with our definitions and conceptualizations, with more varied responses for child engagement. We discuss our procedures and results in terms of reducing measurement error that may be attributable to measurement targets in advance of future examinations of observation conditions (e.g., observer training, session duration) and situational variance (e.g., instructional pedagogy, adult-child ratios) that are often influential within observation-based assessments.</p>


2021 ◽  
Author(s):  
Qi Li ◽  
Miao He ◽  
Michael Kühn ◽  
Xiaying Li ◽  
Liang Xu

&lt;p&gt;Injecting fluid into the formation is an effective solution for improving the permeability and production of a target reservoir. The evaluation of economy and safety of injection process is a challenging issue faced in reservoir engineering [1-2]. As known, the relative magnitude and direction of the principal stresses significantly influence the hydro-mechanical behavior of reservoir rock during fluid injection. However, due to the limitations of current testing techniques, it is still difficult to comprehensively conduct laboratory injection tests under various stress conditions, e.g. triaxial extension stress states [3]. To this end, a series of numerical simulations were carried out on reservoir rock to study the hydro-mechanical changes under different stress states during fluid injection. In this modelling, the saturated rock is first loaded to the target stress state under drainage conditions, and then the stress state is maintained and water is injected from the top end to simulate the reservoir injection process. Particular attention is paid to the difference in hydro-mechanical changes under triaxial compression and extension stresses. This includes the difference of the pore pressure propagation, mean effective stress, volumetric strain, and stress-induced permeability. The numerical results demonstrate that the differential stress will significantly affect the hydro-mechanical behavior of target rock, but the degree of influence is different under the two triaxial stress states. The hydro-mechanical changes caused by the triaxial compression stress states are generally greater than that of extension, but the difference decreases with increasing differential stress, indicating that the increase of the differential stress will weaken the impact of the stress state on the hydro-mechanical response. This study can deepen our understanding of the stress-induced hydro-mechanical coupling process in reservoir injection engineering.&lt;/p&gt;&lt;p&gt;Keywords: Reservoir injection; Subsurface flow; Hydro-mechanical coupling; Stress state; Triaxial experiment modelling&lt;/p&gt;&lt;p&gt;[1] Li, X., Lei, X. &amp; Li, Q. 2016. Injection-induced fracturing process in a tight sandstone under different saturation conditions. Environmental Earth Sciences, 75, 1466, http://doi.org/10.1007/s12665-016-6265-2&lt;/p&gt;&lt;p&gt;[2] Yang, D., Li, Q. &amp; Zhang, L. 2016. Propagation of pore pressure diffusion waves in saturated dual-porosity media (II). Journal of Applied Physics, 119, 154901, http://doi.org/10.1063/1.4946832&lt;/p&gt;&lt;p&gt;[3] Xu, L., Li, Q., Myers, M., Tan, Y., He, M., Umeobi, H.I. &amp; Li, X. 2021. The effects of porosity and permeability changes on simulated supercritical CO&lt;sub&gt;2&lt;/sub&gt; migration front in tight glutenite under different effective confining pressures from 1.5 MPa to 21.5 MPa. Greenhouse Gases: Science and Technology, http://doi.org/10.1002/ghg.2043&lt;/p&gt;


Author(s):  
Norman Gwangwava ◽  
Catherine Hlahla

Using 3D printing technology in learning institutions brings an industrial experience to learners as well as an exposure to the same cutting-edge technologies encountered in real life careers. The chapter explores 3D printing technology at kindergarten (preschool), in the lecture room (BEng programme), and ready-to-use 3D printed products. In educational toy applications, the effect of poor product designs that do not meet the children's dimensional and safety requirements can lead to injuries, development of musculoskeletal disorders and health problems, some of which may be experienced by the children when they grow up. In order to address the problem of poor design, measurements of anthropometric dimensions from male and female children, aging from 6 to 7 years old were taken and concepts for educational toys were then generated. Other practical applications of the 3D printing technology explored in the chapter are lecture room demonstrations, prototyping of design projects and a web-based mass-customization of office mini-storage products.


Author(s):  
Mounir Kehal

The use of web-based technologies in academic institutions for their diverse practices has been widespread in colleges and universities for several decades. These applications include surveying stakeholders, assessing classes, reporting on faculty development, and assurance of learning data to mention a few. Further advances have led to the integration of applications that not only enable the sharing of knowledge, but which also support the reporting requirements necessary to obtain and retain accreditation; likewise satisfy the supply of intellectual capital to the employment marketplace. In this chapter, the authors aim to portray relationship between assurance of learning and assessment at large with real life examples and approaches.


Sign in / Sign up

Export Citation Format

Share Document