An Agent Based Framework to Automatically Generate 3D CAD Models of Customer Specified Products

Author(s):  
Zahed Siddique ◽  
Karunakar Reddy Boddu

To survive in today’s volatile market, companies are striving to deliver greater quality, more customization, faster response, more innovative designs and lower prices. The new shift in the current market has introduced the concept of mass customization. One of the aspects of mass customization is to provide customers with products that are manufactured to their needs and requirements. To provide such a support requires better integration of customer with different stages of design and manufacturing. Expansion of the Internet provides an opportunity for such an integration, which will need to link design and manufacturing of the company with the customer. In current approaches, customer usually specifies the options and gets the price or simple pictures of the object. In this paper a system is presented, where customer options and size parameters are gathered using the Internet and is used to automatically generate 3D CAD model of the product and then display the 3D model to the customer for feedback. Development of a framework to generate 3D models from user input will require maintaining explicit correspondence among various types of product information from a module perspective. The Internet based system presented in this paper uses templates to automatically generate 3D CAD models of components, assemble them into products and then export VRML files that are displayed to the customer.

Author(s):  
Alexander McDermott Miller ◽  
Nathan W. Hartman ◽  
Thomas Hedberg ◽  
Allison Barnard Feeney ◽  
Jesse Zahner

The Model-Based Enterprise (MBE) paradigm is being adopted by manufacturing companies in a variety of industries. Companies benefit from enhanced visualization, documentation, and communication capabilities when 3D annotated product definitions, or Model-Based Definitions (MBD) replace two-dimensional drawings throughout an enterprise. It is critical that product information, much of which is defined implicitly in drawings, is not lost in this transition. This presents a challenge to authors and translators of 3D models used through the product lifecycle. They must understand the semantics of the product information typically presented by a drawing then explicitly include this information, in a computer-interpretable form, in the MBD. The research study described in this paper seeks to discover what is the minimum set of required information to carry out all the tasks in a given workflow of a model-based enterprise. A survey was conducted across various industry sectors to identify the foundational elements of this Minimum Information Model (MIM) in selected workflows. This study identified the information used within the specific workflows, the capabilities of 3D CAD models to carry this information, and the implications for doing so.


Author(s):  
ZAHED SIDDIQUE ◽  
KARUNAKAR REDDY BODDU

One of the aspects of mass customization is to provide customers with products that are manufactured to their needs and requirements. To provide such support requires better integration of the customer into different stages of design and manufacturing. Expansion of the Internet provides an opportunity for such an integration, which will need to link design and manufacturing of the company with the customer. In current approaches, customers usually specify the options and get the price or simple pictures of the object. In this paper we present a framework in which customer options and size parameters are gathered using the Internet. It is used to automatically generate a 3-dimensional computer-aided design model of the product, estimate the price of the product, and generate assembly sequence information. The framework for mass customization of products necessitates information management among different segments of the company and the customer. The Internet-based system presented in this paper uses a graph grammar and templates to explicitly maintain correspondence among various types of product information from a module perspective. The system is demonstrated using a customizable coffeemaker product family.


Author(s):  
Ratnadeep Paul ◽  
Sam Anand

Product Life-cycle Management (PLM) has been one of the single most important techniques to have been developed in the manufacturing industry. The increasing capabilities of internet and the ever increasing dependence of business entities on internet have led to the development of metaverses — internet-based 3D virtual worlds — which act as business platforms where companies display and showcase their latest products and services. This is in turn has led to a demand for development of methods for the easy transfer of data from stand alone PLM systems to the internet based virtual worlds. This paper presents the development of a translator which will transfer product data of 3D models created in CAD systems to an internet based virtual world. This translator uses a faceted-surface approach to transfer the product information. In this work CAD models were converted to a CAD-neutral data format, JT file format, and finally recreated in the metaverse Second Life (SL). Examples of models translated from JT to SL have been presented. A technique known as prim optimization, which increases the efficiency of the translation was also incorporated in the algorithm for the translator. Examples of prim optimization have been provided in the paper.


2013 ◽  
Vol 579-580 ◽  
pp. 320-324
Author(s):  
Jian Hua Ye

With the information technology development, the manufacturing informatization has developed rapidly in recent years. 3D computer aided design (CAD) has become indispensable for developing new products. Network also plays an important role in exchanging information. In this case, people have a growing tendency to exchange information by 3D model rather than text or images. Through network platform to provide 3D dynamic display and lectotype service becomes the trend of the development gradually. So in this paper, a 3D dynamic display and interactive lectotype system was presents for mechanical design. This paper put forward a solution to exchange information by 3D model by integration of 3D CAD and Web3D techniques. Use the Viewpoint technique to displays interactive 3D models. Base on SolidWorks to exchange the 3D CAD model to Viewpoint model, and generation 2D and 3D commonly format files for downloading. Use database management system to manage all kinds of data. Proved by practice, this system can significantly increase conversion and improve the customer experience


Author(s):  
Karthik Viswanathan ◽  
Sagar Chowdhury ◽  
Zahed Siddique

Computer-Aided Design (CAD) is used extensively during mechanical product design, which involves creating 3D models of components and then assembling them into modules and systems. Methods and tools to compare components and identify a common platform using these 3D CAD models of components would facilitate faster specification of product family architecture. Hence, there is a need to develop means for comparing component geometry, in order to identify the common and distinct features, determine component commonality, and identify a common platform for the set of components. This paper presents an approach to determine geometric commonality between components from their 3D solid models. The approach consists of performing a pair-wise comparison between components. To measure commonality for a pair of components, first all feature-pair’s dimensions and positions are measured, which then combined to give the overall component-pair commonality.


Author(s):  
Nashwan Alsalam Ali ◽  
Abdul Monem S. Rahma ◽  
Shaimaa H. Shaker

<p class="0abstract">The multimedia application developments in recent years lead to the widespread of 3D model applications. It becomes more popular in various fields as well as exchanging it over the internet. The security of the 3D models is a very important issue now a day, so the scheme for encrypting the 3D model will be proposed in this work. In this proposed scheme, the 3D polygon mesh model will be protected through the encrypting process based on a 3D Lorenz Chaotic map where the vertices value of the 3D polygon mesh model will be modified using 3D keys generated by 3D Lorenz Chaotic Map, which has excellent property and provides a good diffusion. The proposed scheme was implemented on various 3D models, which have a different number of vertices and faces. The experimental results show that the proposed scheme has good encryption results, which were noted through completely deforming and changing the whole shape of the 3D models. The Hausdorff Distance (HD) and histogram metrics are adopted to calculate the matching degree between the original and extracted model. The results show that the original and extracted model are identical through the values of HD, where they are approximately zero, and the histogram visually is identical.    </p>


2016 ◽  
Vol 34 (2) ◽  
pp. 239-258 ◽  
Author(s):  
Michael Groenendyk

Purpose – The number of 3D models available on the internet to both students and educators is rapidly expanding. Not only are the 3D model collections of popular websites like Thingiverse.com growing, organizations such as the Smithsonian Institution and NASA have also recently begun to build collections of 3D models and make these openly accessible online. Yet, even with increased interest in 3D printing and 3D scanning technologies, little is known about the overall structure of the 3D models available on the internet. The paper aims to discuss this issue. Design/methodology/approach – To initiate this project, a list was built of 33 of the most widely used 3D model websites on the internet. Freely downloadable models, as well as models available for purchase or as 3D printed objects were included in the list. Once the list of 33 websites was created, the data for each individual 3D model in the collections was manually assembled and recorded. The titles of the 3D models, keywords, subject headings, license information, and number of views and downloads were recorded, as this information was available. The data were gathered between January and May 2015, and compiled into a CSV database. To determine how online 3D model content relates to a variety of educational disciplines, relevant subject terms for a variety of educational disciples were extracted from the EBSCO database system. With this list of subject terms in hand, the keywords in the CSV database of model information were searched for each of the subject terms, with an automated process using a Perl script. Findings – There have been many teachers, professors, librarians and students who have purchased 3D printers with little or no 3D modelling skills. Without these skills the owners of these 3D printers are entirely reliant on the content created and freely shared by others to make use of their 3D printers. As the data collected for this research paper shows, the vast majority of open 3D model content available online pertains to the professions already well versed in 3D modelling and Computer Aided Design design, such as engineering and architecture. Originality/value – Despite that fact that librarians, teachers and other educators are increasingly using technologies that rely on open 3D model content as educational tools, no research has yet been done to assess the number of 3D models available online and what educational disciplines this content relates to. This paper attempts to fill this gap, providing an overview of the size of this content, the educational disciplines this content relates to and who has so far been responsible for developing this content. This information will be valuable to librarians and teachers currently working with technology such as 3D printers and virtual reality, as well as those considering investing in this technology.


2006 ◽  
Vol 129 (1) ◽  
pp. 190-201 ◽  
Author(s):  
Vahram Avagyan ◽  
Armen Zakarian ◽  
Pravansu Mohanty

In recent years the increased use of 3D scanning hardware has introduced a new type of data to the design and manufacturing field. In many design and manufacturing applications (e.g., part refurbishing or remanufacturing) a scanned 3D model may be provided as an input to a shape matching system to search the database for related or identical models with the purpose of extracting useful information. The introduction of scanned 3D models restricts the use of the CAD-based 3D model search and comparison methods due to significant differences in model representations. The CAD models provide structured and high-level representation of the part features, whereas the scanned 3D models usually come in a polygonal mesh representation, which does not directly reveal engineering features of the part. These differences require new algorithms for comparing the shapes of scanned 3D models, ones that are robust against different scanning technologies and can be adjusted to work with different representations of the models. In this paper, a new approach and algorithms for scanned 3D shape matching and comparison are presented. Given the scanned 3D model as an input the approach first uses general-purpose shape matching methods to identify a small list of likely matches (i.e., candidate models) for more detailed shape comparison. To perform detailed comparison of the shapes each candidate model is geometrically adjusted (i.e., rotated and translated) with the input using one of two new viewpoint algorithms developed in this paper. Once the candidate models are adjusted they are compared to the input to identify the similarities and differences between their shapes. To accomplish this task a new 3D shape matching algorithm is developed. The relevance of the methodology developed in this paper is illustrated with the application of scanned 3D shape matching and comparison algorithms in rapid manufacturing of broken parts.


Author(s):  
Jorge Dorribo-Camba ◽  
Gerardo Alducin-Quintero ◽  
Pascual Perona ◽  
Manuel Contero

The long term goals of this research are to study the effectiveness of CAD 3D annotation techniques to support the explicit communication of design intent and rationale, and to analyze the impact of the annotations in the alteration and reutilization of 3D models in a product design context. Towards these goals, we are initially examining the formal annotation practices defined by model-based standards such as ASME Y14.41-2012 and ISO 16792:2006, and their implementation in current CAD systems. This paper presents a prototype implementation of a module to automatically extract textual information from annotated 3D CAD models. Automated extraction of data annotation can be used to analyze both the content and the quality of the annotations with the purpose of determining what makes annotations effective and ultimately communicating design intent. The architecture of a system designed to manage and manipulate this information is also described and analyzed.


2011 ◽  
Vol 321 ◽  
pp. 226-229
Author(s):  
Guang Shen Xu ◽  
Tian You Jing

According to the requirements of integral Stereolithography (integral SL) System, a new direct slicing method under Pro/ENGINEER environment is developed. 3D CAD models are sliced with Pro/TOOLKIT in Pro/ENGINEER environment, and section image of 3D models can be obtained and saved as image format. Dynamic masks are produced with the cross-section images which obtained through the slicing method by dynamic pattern generator, and then 3D real prototyping is fabricated conveniently with integral SL System. A 3D tower model is sliced with this method, and the tower prototyping also is fabricated with integral SL System. Compared with the STL format files slicing method, the new slicing method can achieve high accuracy of layer section profile. The direct slicing method provides a new solution for integral SL system to build objects with high accuracy.


Sign in / Sign up

Export Citation Format

Share Document