Linkage Mechanisms With Cam Integrated Joints for Controlled Harmonic Content of the Output Motion: Theory and Application

Author(s):  
L. Yuan ◽  
J. Rastegar

In a recent study, the authors presented a systematic method for the modification of the output motion of linkage mechanisms with closed-loop chains using cams positioned at one or more of the mechanism joints. In this paper, the method is applied to the design of a linkage mechanism with an integrated cam mechanism for the purpose of eliminating the high harmonic component of the output link motion. The mechanism may be synthesized using well-developed linkage mechanism synthesis techniques for the intended application. Based on this method, a cam mechanism is synthesized for a prescribed output link motion while limiting the output motion to a simple harmonic motion with the frequency of its constant input velocity. The mechanism is constructed and tested. In mechanisms with relatively rigid links, the primary source of high harmonics in the output motion is the nonlinearity of the kinematics of their closed-loop chains. With the present method, a selected range or ranges of high harmonic motions generated due to such nonlinearities may be eliminated by integrating appropriately designed cams. By eliminating the high harmonic component of the output motion of a mechanism, the potential vibrational excitation that the mechanism can impart on the overall system, including its own structure, is greatly reduced. The resulting system should therefore be capable of operating at higher speeds and with increased precision.

2007 ◽  
Vol 130 (1) ◽  
Author(s):  
L. Yuan ◽  
J. Rastegar ◽  
J. Zhang

In a recent study, the authors presented a systematic method for the modification of the output motion of linkage mechanisms with closed-loop chains using cams positioned at one or more joints of the mechanism. In this paper, the method is applied to the design of a linkage mechanism with an integrated cam mechanism to eliminate high harmonic component of the output motion. The mechanism may be synthesized using any existing linkage mechanism synthesis technique. In the present study, a cam mechanism is synthesized to eliminate all high harmonic components of the output link motion of a four-bar linkage mechanism to illustrate the potentials of the present approach. The mechanism is then constructed and successfully tested. With the present method, selected ranges of high harmonic motions generated due to the mechanisms kinematics nonlinearity can be eliminated by integrating appropriately designed cams, thereby significantly reducing the potential vibrational excitation that the mechanism can impart on the overall system, including its own structure. Such systems should therefore be capable of operating at higher speeds and with increased precision.


Author(s):  
L. Yuan ◽  
J. Rastegar

Abstract A systematic method is presented for the integration of smart (active) materials based actuators into the structure of mechanical systems in general and mechanisms with closed-loop chains in particular for the purpose of modifying the output motion of the system. In the resent study, the method is applied to a four-bar linkage mechanism with a constant input velocity for the purpose of eliminating the high harmonic component of the output link motion. By eliminating the high harmonic component of the output motion of a mechanism, the potential vibrational excitation that the mechanism can impart on the overall system and its own structure is greatly reduced. The resulting system should therefore be capable of operating at higher speeds with increased precision. For mechanisms with rigid links, the primary source of high harmonic motions is the nonlinearity of the kinematics of the closed-loop chain. The usually less prominent high harmonic motions due to joint and/or structural flexibility may be eliminated in a similar manner and will be addressed in future publications.


2004 ◽  
Vol 126 (1) ◽  
pp. 135-142 ◽  
Author(s):  
Lifang Yuan ◽  
Jahangir S. Rastegar

A new method is presented for the modification of the output motion of linkage mechanisms with closed-loop chains using cams positioned at one or more of its joints. As an example and to present the basic concept, the method is applied to a four-bar linkage mechanism that is synthesized for function generation for the purpose of eliminating the high harmonic component of the output link motion. By eliminating the high harmonic component of the output motion of a mechanism, the potential vibrational excitation that the mechanism can impart on the overall system, including its own structure, is greatly reduced. The resulting system should therefore be capable of operating at higher speeds and with increased precision. For mechanisms with rigid links, the primary source of high harmonics in the output motion is the nonlinearity of the kinematics of their closed-loop chains. With the present method, a selected range or ranges of high harmonic motions generated due to such nonlinearities may be eliminated by integrating appropriately designed cams that are used to vary the effective length of one or more of the links during the motion. A numerical example is provided together with a discussion of the related topics of interest.


Author(s):  
L. Yuan ◽  
J. Rastegar

Abstract A new method is presented for the modification of the output motion of linkage mechanisms with closed-loop chains using cams positioned at one or more of its joints. In particular, the method is applied to a four-bar linkage mechanism that is synthesized for function generation for the purpose of eliminating the high harmonic component of the output link motion. By eliminating the high harmonic component of the output motion of a mechanism, the potential vibrational excitation that the mechanism can impart on the overall system, including its own structure, is greatly reduced. The resulting system should therefore be capable of operating at higher speeds with increased precision. For mechanisms with rigid links, the primary source of high harmonic motions is the nonlinearity of the kinematics of closed-loop chains. With the present method, the higher harmonic motions generated due to such nonlinearities are eliminated by the integration of appropriately designed cams that are used to vary the effective link lengths. A numerical example is provided together with a discussion of the related topics of interest.


Author(s):  
J. Rastegar ◽  
L. Yuan

Abstract A systematic method is presented for kinematics synthesis of high-speed mechanisms with optimally integrated smart materials based actuators for the purpose of modifying the output link motion. As an example, the method is applied to a four-bar linkage mechanism that is synthesized for function generation to eliminate the high harmonic component of the output link motion. For mechanisms with rigid links, the high harmonic motions are generated due to the nonlinearity of the kinematics of their closed-loop chains. By eliminating the high harmonic component of the output motion, the potential vibrational excitation that the mechanism can impart on the overall system and its own structure is greatly reduced. The resulting system should therefore be capable of operating at higher speeds with increased precision. A numerical example is provided together with a discussion of the application of the method to other mechanism synthesis problems and some related topics of interest.


2000 ◽  
Vol 124 (1) ◽  
pp. 14-20 ◽  
Author(s):  
J. Rastegar ◽  
L. Yuan

A systematic method is presented for kinematics synthesis of high-speed mechanisms with optimally integrated smart materials based actuators for the purpose of modifying the output link motion. As an example, the method is applied to a four-bar linkage mechanism that is synthesized for function generation to eliminate the high harmonic component of the output link motion. For mechanisms with rigid links, the high harmonic motions are generated due to the nonlinearity of the kinematics of their closed-loop chains. By eliminating the high harmonic component of the output motion, the potential vibrational excitation that the mechanism can impart on the overall system and its own structure is greatly reduced. The resulting system should therefore be capable of operating at higher speeds and with greater precision. A numerical example is provided together with a discussion of the application of the method to other mechanism synthesis problems and some related topics of interest.


Author(s):  
Jahangir Rastegar ◽  
Dake Feng ◽  
Lin Hua

It is well known that due to the nonlinearity of the kinematics of linkage mechanisms, their output motion contains harmonics of the input motion. In most mechanisms, the generated high harmonic components in the output motion are the main source of vibration excitation that the mechanism imparts on the overall system, including its own structure. For simple linkage mechanisms such as slider-cranks and four-bar linkage mechanisms, the amplitudes of the harmonics of the output motion for constant input rotation have been derived. In the present study, it is shown that certain relationships exist between the amplitudes of the harmonic of the output motions. In particular, odd and even harmonic amplitudes are shown to be related through an inequality relationship. These relationships are due to the basic characteristics of the linkage mechanisms motions, which are significantly simplified for certain linkage geometries. The relationships between the amplitudes of the output velocity harmonics are derived for slider-crank and four-bar linkage mechanisms.


2015 ◽  
Vol 39 (3) ◽  
pp. 637-646
Author(s):  
Ren-Chung Soong

A hybrid-driven five-bar linkage mechanism with one input cycle corresponding to two output cycles is presented. The proposed linkage mechanism is driven by a constant-speed motor and a linear motor, respectively. The output link can generate two same required output cycles during a single input cycle, while the rotational input link rotates with a constant angular speed, and the linear input link follows a reciprocating motion along a specified linear guide fixed on the rotational input link. The configuration, displacement relationship between the input and output links, and conditions of mobility of this proposed mechanism were studied, and a kinematic analysis was performed. The selection of the instantaneous motion trajectory of the linear input link and an optimal dimensional synthesis are also described. An example is provided to verify the feasibility and effectiveness of this methodology.


1999 ◽  
Vol 121 (2) ◽  
pp. 319-323 ◽  
Author(s):  
Teng Guilan ◽  
Fu Haibo ◽  
Zhou Weiyi

Severe vibration and poor positioning accuracy may occur in an indexing cam mechanism operating at a high speed. Torque fluctuation of the input shaft and the resulting fluctuation of kinetic energy of the mechanism may be the major cause of the vibration. In this paper a method is proposed to minimize the fluctuation by using a so-called “speed-varying flywheel” that produces an opposite kinetic energy fluctuation that can counteract the effect of the energy fluctuation. The flywheel is installed on the output shaft of an additional cam-linkage mechanism. The parameter of the cam-linkage mechanism is optimized. An example is given to demonstrate the effectiveness of this method.


Sign in / Sign up

Export Citation Format

Share Document