A Study of the Relationship Between the Dynamic Factor and the Dynamic Transmission Error of Spur Gear Pairs

Author(s):  
V. K. Tamminana ◽  
A. Kahraman ◽  
S. Vijayakar
Author(s):  
Nina Sainte-Marie ◽  
Philippe Velex ◽  
Guillaume Roulois ◽  
Franck Marrot

A three-dimensional dynamic model is presented to simulate the dynamic behavior of single stage gears by using a combination of classic shaft, lumped parameter and specific 2-node gear elements. The mesh excitation formulation is based on transmission errors whose mathematical grounding is briefly described. The validity of the proposed methodology is assessed by comparison with experimental evidence from a test rig. The model is then employed to analyze the relationship between dynamic transmission errors and dynamic tooth loads or root stresses. It is shown that a linear dependency can be observed between the time variations of dynamic transmission error and tooth loading as long as the system can be assimilated to a torsional system but that this linear relationship tends to disappear when the influence of bending cannot be neglected.


Author(s):  
Brian Anichowski ◽  
Ahmet Kahraman ◽  
David Talbot

This paper complements recent investigations [Handschuh et al (2014), Talbot et al (2016)] of the influences of tooth indexing errors on dynamic factors of spur gears by presenting data on changes to the dynamic transmission error. An experimental study is performed using an accelerometer-based dynamic transmission error measurement system incorporated into a high-speed gear tester to establish baseline dynamic behavior of gears having negligible indexing errors, and to characterize changes to this baseline due to application of tightly-controlled intentional indexing errors. Spur test gears having different forms of indexing errors are paired with a gear having negligible indexing error. Dynamic transmission error of gear pairs under these error conditions is measured and examined in both time and frequency domains to quantify the transient effects induced by these indexing errors. Both measurements indicate clearly that the baseline dynamic response, dominated by well-defined resonance peaks and mesh harmonics, are complemented by non-mesh orders of transmission error due the transient behavior induced by indexing errors.


2006 ◽  
Vol 129 (1) ◽  
pp. 75-84 ◽  
Author(s):  
V. K. Tamminana ◽  
A. Kahraman ◽  
S. Vijayakar

In this study, two different dynamic models, a finite-element-based deformable-body model and a simplified discrete model, are developed to predict dynamic behavior of spur gear pairs. Dynamic transmission error (DTE) and dynamic factors (DF) defined based on the gear mesh loads, tooth loads and bending stresses are computed for a number of unmodified and modified spur gears within a wide range of rotational speed for different involute contact ratios and torque values. Although similar models were proposed in the past, they were neither fully validated nor equipped to predict both DTE and different forms of DF. Accordingly, this study focuses on (i) validation of both models through an extensive set of experimental data obtained from a set of tests using spur gear having unmodified and modified tooth profiles, and (ii) establishment of a direct link between DTE and different forms of DF, especially the ones based on tooth forces and the root stresses. The predicted DF and DTE values are related to each other through simplified formulas. Impact of nonlinear behavior, such as tooth separations and jump discontinuities on DF, is also quantified.


1999 ◽  
Vol 121 (1) ◽  
pp. 112-118 ◽  
Author(s):  
A. Kahraman ◽  
G. W. Blankenship

The influence of involute contact ratio on the torsional vibration behavior of a spur gear pair is investigated experimentally by measuring the dynamic transmission error of several gear pairs using a specially designed gear test rig. Measured forced response curves are presented, and harmonic amplitudes of dynamic transmission error are compared above and below gear mesh resonances for both unmodified and modified gears having various involute contact ratio values. The influence of involute contact ratio on dynamic transmission error is quantified and a set of generalized, experimentally validated design guidelines for the proper selection of involute contact ratio to achieve quite gear systems is presented. A simplified analytical model is also proposed which accurately describes the effects of involute contact ratio on dynamic transmission error.


2021 ◽  
Author(s):  
Yaosen Wang ◽  
Adrian A. Hood ◽  
Christopher G. Cooley

Abstract This study analyzes the nonlinear static and dynamic response in spur gear pairs with tooth root crack damage. A finite element/contact mechanics (FE/CM) model is used that accurately captures the elastic deformations on the gear teeth due to kinematic motion, tooth and rim deformations, vibration, and localized increases in compliance due to a tooth root crack. The damage is modeled by releasing the connectivity of the finite element mesh at select nodes near a tooth crack. The sensitivity of the calculated static transmission errors and tooth mesh stiffnesses is determined for varying crack initial locations, final locations, and the path from the initial to final location. Gear tooth mesh stiffness is calculated for a wide range of tooth root crack lengths, including large cracks that extend through nearly all of the tooth. Mesh stiffnesses are meaningfully reduced due to tooth root crack damage. The dynamic response is calculated for cracks of varying length. Larger cracks result in increased peak dynamic transmission errors. For small tooth root cracks the spectrum of dynamic transmission error contains components near the natural frequency of the gear pair. The spectrum of dynamic transmission error has broadband frequency response for large tooth root cracks that extend further than one-half of the tooth’s thickness.


2019 ◽  
Vol 39 (4) ◽  
pp. 1039-1051 ◽  
Author(s):  
Xiong Chun ◽  
Chen Siyu

Experimental measurement of transmission error and vibration of a gear pair with crown modification are developed. With the help of high-precision optical encoder, effects of gear misalignment on unloaded and lightly loaded dynamic transmission error, which are relative to gear rattle, are investigated. The gear mesh misalignment is introduced by eccentric sleeve assembled on the output shaft. Effects of modification and misalignment on the dynamic transmission error, are studied at different load and driving velocity conditions. The experimental results show that, with the increase of the crown amplitude, the peak-to-peak values of dynamic transmission error are decreasing dramatically. Impact deformation or elastic deformation is a very important part of the dynamic transmission error although they are unloaded or lightly loaded. The components in harmonics of meshing frequency will change distinctly comparing cases at low input shaft velocity without and with misalignment, but different phenomena are detected while increasing the input shaft velocity. Finally, the relation between transmission error and gear box vibration is illustrated, and spectrum kurtosis is introduced to reveal gear rattle.


2019 ◽  
Vol 69 (3) ◽  
pp. 303-310
Author(s):  
Benny Thomas ◽  
K. Sankaranarayansamy ◽  
S. Ramachandra ◽  
Suresh Kumar S.P.

Asymmetric spur gears are finding application in many fields including aerospace propulsion and automobile which demand unidirectional or relatively higher load on one side of the gear flank. Design intend to maximise the load carrying capacity of the drive side of asymmetric gear by increasing the pressure angle is achieved at the expense of coast side capacity. Multiple solution for coast to drive side pressure angle exist for a given contact ratio and each of these have relative merits and demerits. In the present work asymmetric spur gears of theoretically equal contact ratio as that of corresponding symmetric gears are selected to investigate the change in gear tooth static transmission error and dynamic behaviour with coast and drive side pressure angle. Study shows that dynamic factor of normal contact ratio asymmetric spur gears below resonance speed are relatively lower than corresponding symmetric gears of same module, contact ratio, number of teeth, coast side pressure angle and fillet radii. Results also show that, coast and drive side pressure angle can be suitably selected for a given contact ratio to reduce the single tooth and double tooth contact static transmission error and dynamic factor of asymmetric spur gears.


Sign in / Sign up

Export Citation Format

Share Document