Evaluation of Tooth Contact Stress With Tooth Flank Film Elements (Comparison of Evaluation With Measurement)

Author(s):  
Ichiro Moriwaki ◽  
Tomohito Tani ◽  
Toshiro Miyata ◽  
Akio Ueda ◽  
Masayoshi Yoshihara

A new finite element analysis for meshing gear pair has been developed with a new element called “tooth flank film element.” The new element is a phantom element put on a tooth flank without any thickness, and enables boundary conditions for a contact problem in meshing teeth to be easily dealt with. In the present paper, contact stresses between tooth flanks of mating gear pair calculated with the proposed finite element method are compared with stresses measured with pressure measurement films. As a result, the proposed method was confirmed to be useful for evaluation of contact stress.

2010 ◽  
Vol 42 ◽  
pp. 48-53
Author(s):  
Jiu Yang Yu ◽  
Jiu Yang Gao ◽  
Wei Lin ◽  
Cheng Gang Wang ◽  
Yan Yang Wu ◽  
...  

The performance of reciprocating seals in rapping device of gasifier was studied through finite element method. The contact stress, Von-Mises stress, and friction power loss of O-ring and Sliding-ring combined Seal-ring were obtained. Meanwhile, the experimental study in performance of seal structures of rapping device were carried out. The results show that both of the seal structures are satisfied seal requirement, but compared with the Sliding-ring combined Seal-ring, the O-ring is easier to be destroyed and power loss of O-ring is higher than Sliding-ring combined Seal-ring. The results also verify the superiority of Sliding-ring combined Seal-ring in rapping device of gasifier.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


2011 ◽  
Vol 314-316 ◽  
pp. 1218-1221
Author(s):  
Hao Min Huang

Conventional methods of design to be completed ordinary hydraulic transmission gear gearbox design, but for such a non-planet-rule entity, and the deformation of the planet-gear contact stress will have a great impact on the planet gear, it will be very difficult According to conventional design. In this paper, ANSYS software to the situation finite element analysis, the planetary gear to simulate modeling study.


2014 ◽  
Vol 496-500 ◽  
pp. 1007-1011
Author(s):  
Jian Hua Fang ◽  
Wei Yan

The design of seal device that can be used in carbide actor is a real problems.This paper presents a kind of oblique-cone-slid-ring (OCSR) assembly seal device that can self-compensate the seal wear in application. The max contact stress on the seal surface and other contact face is far bigger than the work stress of sealed medium in carbide actor. That means the design satisfies the user demand . Keywords: oblique-cone-sliding-ring (OCSR) assembly seal; self-compensation to seal wear; finite element analysis; contact stress;


Author(s):  
Vineet Sahoo ◽  
Rathindranath Maiti

Stresses in flex spline/gear cup in harmonic drives with involute toothed gear pair and conventional strain wave generating cam are analyzed using finite element method in ANSYS® environment and experiments. The most innovative part of this investigation is establishing the evidence of secondary contacts and probable load shared by those contacts experimentally over the finite element analysis. Aiming at the performance improvement of gearing in harmonic drives, with involute toothed gear pair, the investigations are carried out through the following analyses. (a) Initial stresses in flex gear cup due to cam insertion only. (b) Stresses in flex gear cup at no load in fully assembled harmonic drive components i.e. flex gear, ring gear, and strain wave generating cam. (c) Stresses in flex gear cup at full load passing through the two pitch points, i.e. the intersection points of ring gear pitch circle, flex gear pitch curve, and major axis on both sides. Finally, (d) stresses in flex gear cup at full load distributed over all possible primary and secondary contacts, in proportion to their contact intensities. Recorded strains of the flex-gear cup while the cam being rotated showed very good agreement with the results obtained by finite element analysis with proper modeling of loading.


2009 ◽  
Vol 16-19 ◽  
pp. 1248-1252
Author(s):  
Chun Dong Zhu ◽  
Man Chun Zhang ◽  
Lin Hua

As an important forged part of an automobile, the inner hole of the half-shaft bushing must be formed directly. However, the process requires many steps, and how the forging, or deformation, is spread over the production steps directly affects the die life and forging force required. In this paper, the three steps involved in directly forging a half shaft bushing's inner hole are simulated using the two-dimensional finite element method. Further more, we improve the forging process. From numerical calculation, the improved necessary forging force is found to be only half the original force, and the die life is doubled.


Sign in / Sign up

Export Citation Format

Share Document