Analytical Representation of Nano-Scale Parasitic Motion in Flexure-Based Selectively Compliant Mechanisms

Author(s):  
Chinmaya B. Patil ◽  
S. V. Sreenivasan ◽  
Raul G. Longoria

Analytical modeling of selectively compliant mechanisms for quantifying the nano-scale parasitic motion is presented. Flexure-based compliant mechanisms are capable of meeting the demanding requirements of the partially constrained ultraprecision motion systems. However, the geometric errors induced by manufacturing tolerances can limit the precision capability. Understanding parasitic motion at the nano-scale necessitates a 3-D model even for mechanisms that are designed to be planar. A spatial kinematics based kinetostatic model is used here. This approach systematically accounts for the geometric errors, and enables estimation of the inherently spatial parasitic motion. Using insights from screw theory, the parasitic motion is classified into intrinsic mechanism errors, and errors that can be minimized by calibration procedures. A metric that quantifies the intrinsic parasitic motion and characterizes the precision capability of the mechanism is identified. Monte Carlo simulation is used to propagate the variance of the geometric errors through the model to determine the statistical moments of the chosen metric. To illustrate the approach, the modeling and analysis is applied to a classical four-bar mechanism with flexure joints. The model is further used to investigate the key system parameters that influence the intrinsic parasitic motion in the mechanism. The simulation results indicate more than 50% improvement in the precision capability of the four-bar mechanism by improved design of flexure joints, without changing the manufacturing tolerance limits.

Author(s):  
Chinmaya B. Patil ◽  
S. V. Sreenivasan ◽  
Raul G. Longoria

Flexure-based selectively compliant mechanisms with less than six degrees of freedom are capable of meeting the demanding requirements of ultra precision positioning and scanning systems. However, machining imperfections induce undesirable motion and limit the mechanisms precision capability. A spatial kinematics based kinetostatic model is presented here that not only enables determination of inherently spatial parasitic motion due to machining imperfections, but also offers critical geometric insight into the motion characteristics of flexure mechanisms. The analytical development reveals that the geometric errors induced by machining imperfections perturb the special screw systems of motion of ideal flexure mechanisms to their corresponding general screw systems. This insight leads to clearly defined metrics that can capture the non-ideal behavior using screw system theory and is applicable to all selectively compliant mechanisms. This result is illustrated using one and two DOF mechanisms as examples. In the case of rotational DOF flexure mechanisms, the pitch of twist of motion captures the difference between the special and general screw systems and represents the intrinsic parasitic motion. The machining imperfections are regarded as Gaussian random variables with known variance, and the model is used to determine the variance of the pitch of twist via Monte Carlo simulation, leading to determination of the precision capability of the flexure mechanisms. The modeling and analysis is illustrated using one and two DOF rotation flexure mechanisms. Finally, the details of a test setup built to determine the parasitic motion of the one DOF rotational mechanism are presented. Experimental results indicate that the one DOF flexure mechanism is indeed executing screw motion rather than pure rotation.


Author(s):  
Werner W. P. J. van de Sande ◽  
Just L. Herder

Parasitic motion is undesired in precision mechanisms, it causes unwanted kinematics. These erroneous motions are especially apparent in compliant mechanisms. Usually an analysis of parasitic motion is only valid for one type of mechanism. Kinematic information is imbedded in the compliance matrix of any mechanism; an eigenscrew decomposition expresses this kinematic information as screws. It uses screw theory to identify the lines along which a force yields a parallel translation and a rotation yields a parallel moment. These lines are called eigenwrenches and eigentwists. Any other load on the compliant mechanism will lead to parasitic motion. This article introduces two parasitic motion metrics using eigenscrew decomposition: the parasitic resultant from an applied screw and the deviation of an actual degree of freedom from a desired degree of freedom. These metrics are applicable to all compliant mechanism and allow comparison between two compliant mechanisms. These metrics are applied to some common compliant mechanisms as an example.


Author(s):  
Chinmaya B. Patil ◽  
S. V. Sreenivasan ◽  
Raul G. Longoria

Flexure-based compliant mechanisms are the preferred motion guiding systems for small range, nano-precision positioning applications because of excellent characteristics like friction-free continuous motion. These mechanisms are commonly used in nano fabrication equipment and ultra precision instruments. However, machining imperfections induced geometric errors in the mechanisms are known to cause undesirable parasitic motion and significant loss of precision. A systematic design approach to minimize the sensitivity of the flexure mechanisms to geometric errors induced by machining tolerances is presented here. Central to the design approach is the screw systems based analytical model to study the spatial motion characteristics of flexure mechanisms. Using this model, the parasitic motion is classified into those errors which can be corrected by calibration (extrinsic) and those which are coupled with the mechanism motion and cannot be corrected by apriori calibration (intrinsic). Metric to quantify the intrinsic parasitic motion results naturally from the screw systems analysis, and is used to represent the precision capability of the flexure mechanism. The analytical model enables the selection of geometric parameters of flexure joints of the mechanism via an optimization scheme with the aim of minimizing the parasitic motion metric. The statistical nature of the machining tolerances is accounted for by sampling the random variables at every iteration step of the optimization, leading to a stochastic formulation. The robust design approach is illustrated using a one DOF rotational flexure mechanism that is used in nano-imprint lithography equipment. Numerical results of the optimization indicate up to 40% improvement in the precision capability of the mechanism without any change in the manufacturing tolerance limits. Further, it is shown via eigenscrew analysis of mechanism compliance that the robustness resulting from the optimal flexure joint design can be attributed to the improved compliance distribution.


2015 ◽  
Vol 35 (4) ◽  
pp. 341-347 ◽  
Author(s):  
E. Rouhani ◽  
M. J. Nategh

Purpose – The purpose of this paper is to study the workspace and dexterity of a microhexapod which is a 6-degrees of freedom (DOF) parallel compliant manipulator, and also to investigate its dimensional synthesis to maximize the workspace and the global dexterity index at the same time. Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Design/methodology/approach – Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Findings – It has been shown that the proposed procedure for the workspace calculation can considerably speed the required calculations. The optimization results show that a converged-diverged configuration of pods and an increase in the difference between the moving and the stationary platforms’ radii cause the global dexterity index to increase and the workspace to decrease. Originality/value – The proposed algorithm for the workspace analysis is very important, especially when it is an objective function of an optimization problem based on the search method. In addition, using screw theory can simply construct the homogeneous Jacobian matrix. The proposed methodology can be used for any other micromanipulator.


2014 ◽  
Vol 941-944 ◽  
pp. 2219-2223 ◽  
Author(s):  
Guo Juan Zhao ◽  
Lei Zhang ◽  
Shi Jun Ji ◽  
Xin Wang

In this paper, a new method is presented for the identification of machine tool component errors. Firstly, the Non-Uniform Rational B-spline (NURBS) is established to represent the geometric component errors. The individual geometric errors of the motion parts are measured by laser interferometer. Then, the volumetric error for a machine tool with three motion parts is modeled based on the screw theory. Finally, the simulations and experiments are conducted to confirm the validity of the proposed method.


2010 ◽  
Vol 44-47 ◽  
pp. 1375-1379
Author(s):  
Da Chang Zhu ◽  
Li Meng ◽  
Tao Jiang

Parallel manipulators has been extensively studied by virtues or its high force-to-weight ratio and widely spread applications such as vehicle or flight simulator, a machine tool and the end effector of robot system. However, as each limb includes several rigid joints, assembling error is demanded strictly, especially in precision measurement and micro-electronics. On the other hand, compliant mechanisms take advantage of recoverable deformation to transfer or transform motion, force, or energy and the benefits of compliant mechanisms mainly come from the elimination of traditional rigid joints, but the traditional displacement method reduce the stiffness of spatial compliant parallel manipulators. In this paper, a new approach of structure synthesis of 3-DoF rotational compliant parallel manipulators is proposed. Based on screw theory, the structures of RRS type 3-DoF rotational spatial compliant parallel manipulator are developed. Experiments via ANSYS are conducted to give some validation of the theoretical analysis.


Author(s):  
Joost R. Leemans ◽  
Charles J. Kim ◽  
Werner W. P. J. van de Sande ◽  
Just L. Herder

Compliant shell mechanisms utilize spatially curved thin-walled structures to transfer or transmit force, motion or energy through elastic deformation. To design with spatial mechanisms designers need comprehensive characterization methods, while existing methods fall short of meaningful comparisons between rotational and translational degrees of freedom. This paper presents two approaches, both of which are based on the principle of virtual loads and potential energy, utilizing properties of screw theory, Plücker coordinates and an eigen-decomposition, leading to two unification lengths that can be used to compare and visualize all six degrees of freedom directions and magnitudes of compliant mechanisms in a non-arbitrary physically meaningful manner.


Author(s):  
Hai-Jun Su ◽  
Denis V. Dorozhkin ◽  
Judy M. Vance

This paper presents a screw theory based approach for the type synthesis of compliant mechanisms with flexures. We provide a systematic formulation of the constraint-based approach which has been mainly developed by precision engineering experts in designing precision machines. The two fundamental concepts in the constraint-based approach, constraint and freedom, can be represented mathematically by a wrench and a twist in screw theory. For example, an ideal wire flexure applies a translational constraint which can be described a wrench of pure force. As a result, the design rules of the constraint-based approach can be systematically formulated in the format of screws and screw systems. Two major problems in compliant mechanism design, constraint pattern analysis and constraint pattern design are discussed with examples in details. This innovative method paves the way for introducing computational techniques into the constraint-based approach for the synthesis and analysis of compliant mechanisms.


2020 ◽  
Vol 39 (14) ◽  
pp. 1686-1705
Author(s):  
Xiaowei Shan ◽  
Lionel Birglen

Soft grasping of random objects in unstructured environments has been a research topic of predilection both in academia and in industry because of its complexity but great practical relevance. However, accurate modeling of soft hands and fingers has proven a difficult challenge to tackle. Focusing on this issue, this article presents a detailed mathematical modeling and performance analysis of parallel grippers equipped with soft fingers taking advantage of the fin ray effect (FRE). The FRE, based on biomimetic principles, is most commonly found in the design of grasping soft fingers, but despite their popularity, finding a convenient model to assess the grasp capabilities of these fingers is challenging. This article aims at solving this issue by providing an analytic tool to better understand and ultimately design this type of soft fingers. First, a kinetostatic model of a general multi-crossbeam finger is established. This model will allow for a fast yet accurate estimation of the contact forces generated when the fingers grasp an arbitrarily shaped object. The obtained mathematical model will be subsequently validated by numerically to ensure the estimations of the overall grasp strength and individual contact forces are indeed accurate. Physical experiments conducted with 3D-printed fingers of the most common architecture of FRE fingers will also be presented and shown to support the proposed model. Finally, the impact of the relative stiffness between different areas of the fingers will be evaluated to provide insight into further refinement and optimization of these fingers.


Author(s):  
Yue-Qing Yu ◽  
Qian Li ◽  
Qi-Ping Xu

An intensive study on the dynamic modeling and analysis of compliant mechanisms is presented in this paper based on the pseudo-rigid-body model. The pseudo-rigid-body dynamic model with single degree-of-freedom is proposed at first and the dynamic equation of the 1R pseudo-rigid-body dynamic model for a flexural beam is presented briefly. The pseudo-rigid-body dynamic models with multi-degrees-of-freedom are then derived in detail. The dynamic equations of the 2R pseudo-rigid-body dynamic model and 3R pseudo-rigid-body dynamic model for the flexural beams are obtained using Lagrange equation. Numerical investigations on the natural frequencies and dynamic responses of the three pseudo-rigid-body dynamic models are made. The effectiveness and superiority of the pseudo-rigid-body dynamic model has been shown by comparing with the finite element analysis method. An example of a compliant parallel-guiding mechanism is presented to investigate the dynamic behavior of the mechanism using the 2R pseudo-rigid-body dynamic model.


Sign in / Sign up

Export Citation Format

Share Document