Constraint Redundancy in Mobility of Parallel Manipulators

Author(s):  
Akhtar N. Malik ◽  
Jian S. Dai ◽  
Gordon R. Pennock

This paper presents a systematic approach to obtain the degrees of freedom (DOF) of the platforms of parallel manipulators. The paper begins with general Kutzbach criterion for mobility. With simple mathematical transformations this criterion is modified to incorporate number of parallel legs used in the parallel platform-type mechanism and the number of joints in the legs. The theory of screws is used to study the freedom of the joints in the individual legs and the mobility of the platform. It is established that the general Kutzbach mobility criterion does not cater for situations where the freedom screws (or constraint screws) of the joints in a leg become dependent on the freedom screws (or constraint screws) of one or more of the other legs; thus, altering the mobility of the platform. The general modified Kutzbach mobility formula is further modified to resolve the problem of redundant constraints. The paper then provides a systematic approach towards the number synthesis of parallel platform-type mechanims. The paper includes three examples of such mechanisms analyzed by this approach. Results agree with the existing studies carried out on the mechanism used in the examples. A numerical example of a three-degree-of-freedom parallel manipulator with three legs is used to show the enumeration of all possible parallel manipulators. This includes cases with and without redundant constraints.

Author(s):  
H. R. Mohammadi Daniali ◽  
P. J. Zsombor-Murray ◽  
Jorge Angeles

Abstract The singularities of the Jacobian matrices of two manipulator with three degrees of freedom are analyzed. One is a planar 3-legged manipulator; the other, a planar double-triangular manipulator. A general classification of parallel-manipulator singularities into three groups is described. The classification scheme relies on the properties of the Jacobian matrices of the manipulator. Finally, the three types of singularity are identified for the two manipulators.


2018 ◽  
Vol 9 (1) ◽  
pp. 25-39 ◽  
Author(s):  
Alfonso Hernández ◽  
Erik Macho ◽  
Mónica Urízar ◽  
Víctor Petuya ◽  
Zhen Zhang

Abstract. The Pa2 pair is composed of two intertwined articulated parallelograms connecting in parallel two links of a kinematic chain. This pair has two translational degrees of freedom leading to a translational plane variable with the position. Currently, the Pa2 pair appears in conceptual designs presented in recent papers. However, its practical application is very limited. One of the reasons for this can be the high number of redundant constraints it has. But, it has to be considered that most of them can be eliminated by replacing wisely the revolute joints by spherical joints. On the other side, the structure of the Pa2 pair contributes to increase the global stiffness of the kinematic chain in which it is mounted. Also, its implementation is a promising alternative to the problematic passive prismatic joints. In this paper, the Pa2 pairs are used in the design of a 3 − P Pa2 parallel manipulator. The potentiality of this design is evaluated and proven after doing the following analyses: direct and inverse kinematics, singularity study, and workspace computation and assessment.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ernesto Rodriguez-Leal ◽  
Jian S. Dai ◽  
Gordon R. Pennock

This paper investigates the mobility of a family of fully translational parallel manipulators based on screw system analysis by identifying the common constraint and redundant constraints, providing a case study of this approach. The paper presents the branch motion-screws for the 3-RP̲C-Y parallel manipulator, the 3-RCC-Y (or 3-RP̲RC-Y) parallel manipulator, and a newly proposed 3-RP̲C-T parallel manipulator. Then the paper determines the sets of platform constraint-screws for each of these three manipulators. The constraints exerted on the platforms of the 3-RP̲Carchitectures and the 3-RCC-Y manipulators are analyzed using the screw system approach and have been identified as couples. A similarity has been identified with the axes of couples: they are perpendicular to theRjoint axes, but in the former the axes are coplanar with the base and in the latter the axes are perpendicular to the limb. The remaining couples act about the axis that is normal to the base. The motion-screw system and constraint-screw system analysis leads to the insightful understanding of the mobility of the platform that is then obtained by determining the reciprocal screws to the platform constraint screw sets, resulting in three independent instantaneous translational degrees-of-freedom. To validate the mobility analysis of the three parallel manipulators, the paper includes motion simulations which use a commercially available kinematics software.


2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Andrew Johnson ◽  
Xianwen Kong ◽  
James Ritchie

The determination of workspace is an essential step in the development of parallel manipulators. By extending the virtual-chain (VC) approach to the type synthesis of parallel manipulators, this technical brief proposes a VC approach to the workspace analysis of parallel manipulators. This method is first outlined before being illustrated by the production of a three-dimensional (3D) computer-aided-design (CAD) model of a 3-RPS parallel manipulator and evaluating it for the workspace of the manipulator. Here, R, P and S denote revolute, prismatic and spherical joints respectively. The VC represents the motion capability of moving platform of a manipulator and is shown to be very useful in the production of a graphical representation of the workspace. Using this approach, the link interferences and certain transmission indices can be easily taken into consideration in determining the workspace of a parallel manipulator.


Author(s):  
Richard Stamper ◽  
Lung-Wen Tsai

Abstract The dynamics of a parallel manipulator with three translational degrees of freedom are considered. Two models are developed to characterize the dynamics of the manipulator. The first is a traditional Lagrangian based model, and is presented to provide a basis of comparison for the second approach. The second model is based on a simplified Newton-Euler formulation. This method takes advantage of the kinematic structure of this type of parallel manipulator that allows the actuators to be mounted directly on the base. Accordingly, the dynamics of the manipulator is dominated by the mass of the moving platform, end-effector, and payload rather than the mass of the actuators. This paper suggests a new method to approach the dynamics of parallel manipulators that takes advantage of this characteristic. Using this method the forces that define the motion of moving platform are mapped to the actuators using the Jacobian matrix, allowing a simplified Newton-Euler approach to be applied. This second method offers the advantage of characterizing the dynamics of the manipulator nearly as well as the Lagrangian approach while being less computationally intensive. A numerical example is presented to illustrate the close agreement between the two models.


2003 ◽  
Vol 125 (2) ◽  
pp. 302-307 ◽  
Author(s):  
Marco Carricato ◽  
Vincenzo Parenti-Castelli

This article addresses parallel manipulators with fewer than six degrees of freedom, whose use may prove valuable in those applications in which a higher mobility is uncalled for. In particular, a family of 3-dof manipulators containing only revolute joints or at the most revolute and prismatic ones is studied. Design and assembly conditions sufficient to provide the travelling platform with a pure translational motion are determined and two sub-families that fulfill the imposed constraint are found: one is already known in the literature, while the other is original. The new architecture does not exhibit rotation singularities, i.e., configurations in which the platform gains rotational degrees of freedom. A geometric interpretation of the translation singularities is provided.


Author(s):  
Yanwen Li ◽  
Yueyue Zhang ◽  
Lumin Wang ◽  
Zhen Huang

This paper investigates a novel 4-DOF 3-RRUR parallel manipulator, the number and the characteristics of its degrees of freedom are determined firstly, the rational input plan and the invert and forward kinematic solutions are carried out then. The corresponding numeral example of the forward kinematics is given. This type of parallel manipulators has a symmetrical structure, less accumulated error, and can be used to construct virtual-axis machine tools. The analysis in this paper will play an important role in promoting the application of such manipulators.


2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Jun Wu ◽  
Binbin Zhang ◽  
Liping Wang

The paper deals with the evaluation of acceleration of redundant and nonredundant parallel manipulators. The dynamic model of three degrees-of-freedom (3DOF) parallel manipulator is derived by using the virtual work principle. Based on the dynamic model, a measure is proposed for the acceleration evaluation of the redundant parallel manipulator and its nonredundant counterpart. The measure is designed on the basis of the maximum acceleration of the mobile platform when one actuated joint force is unit and other actuated joint forces are less than or equal to a unit force. The measure for evaluation of acceleration can be used to evaluate the acceleration of both redundant parallel manipulators and nonredundant parallel manipulators. Furthermore, the acceleration of the 4-PSS-PU parallel manipulator and its nonredundant counterpart are compared.


2003 ◽  
Vol 125 (1) ◽  
pp. 92-97 ◽  
Author(s):  
Han Sung Kim ◽  
Lung-Wen Tsai

This paper presents the design of spatial 3-RPS parallel manipulators from dimensional synthesis point of view. Since a spatial 3-RPS manipulator has only 3 degrees of freedom, its end effector cannot be positioned arbitrarily in space. It is shown that at most six positions and orientations of the moving platform can be prescribed at will and, given six prescribed positions, there are at most ten RPS chains that can be used to construct up to 120 manipulators. Further, solution methods for fewer than six prescribed positions are also described.


2013 ◽  
Vol 284-287 ◽  
pp. 973-978
Author(s):  
Chia Chun Chu

The purpose of this paper is to present a design approach based on the geometric constraints of joints for synthesizing differential mechanisms with two degrees-of-freedom, including some mechanisms with the same functions but distinct structures. The concept of virtual axes is presented. And, there are five steps in the design process. Step 1 is to decide fundamental entities by the properties of existing mechanisms and the technique of number synthesis, and 10 suitable fundamental entities of differential mechanisms are available. Step 2 is to compose geometric constraints, and 14 items are obtained. Step 3 is to compose links, and 15 items are derived. Step 4 is to assign fixed constraints for inputs or outputs, and 15 results are found. The final step is to particularize the obtained events by the properties of existing mechanisms and the structures of fundamental entities. As a result, 8 feasible results for differential mechanisms with two degrees-of-freedom and two basic loops are obtained in which 2 are existing designs and the other 6 are novel.


Sign in / Sign up

Export Citation Format

Share Document