Kinematic Synthesis of a Spatial 3-RPS Parallel Manipulator

2003 ◽  
Vol 125 (1) ◽  
pp. 92-97 ◽  
Author(s):  
Han Sung Kim ◽  
Lung-Wen Tsai

This paper presents the design of spatial 3-RPS parallel manipulators from dimensional synthesis point of view. Since a spatial 3-RPS manipulator has only 3 degrees of freedom, its end effector cannot be positioned arbitrarily in space. It is shown that at most six positions and orientations of the moving platform can be prescribed at will and, given six prescribed positions, there are at most ten RPS chains that can be used to construct up to 120 manipulators. Further, solution methods for fewer than six prescribed positions are also described.

Author(s):  
Richard Stamper ◽  
Lung-Wen Tsai

Abstract The dynamics of a parallel manipulator with three translational degrees of freedom are considered. Two models are developed to characterize the dynamics of the manipulator. The first is a traditional Lagrangian based model, and is presented to provide a basis of comparison for the second approach. The second model is based on a simplified Newton-Euler formulation. This method takes advantage of the kinematic structure of this type of parallel manipulator that allows the actuators to be mounted directly on the base. Accordingly, the dynamics of the manipulator is dominated by the mass of the moving platform, end-effector, and payload rather than the mass of the actuators. This paper suggests a new method to approach the dynamics of parallel manipulators that takes advantage of this characteristic. Using this method the forces that define the motion of moving platform are mapped to the actuators using the Jacobian matrix, allowing a simplified Newton-Euler approach to be applied. This second method offers the advantage of characterizing the dynamics of the manipulator nearly as well as the Lagrangian approach while being less computationally intensive. A numerical example is presented to illustrate the close agreement between the two models.


Robotica ◽  
2012 ◽  
Vol 31 (3) ◽  
pp. 381-388 ◽  
Author(s):  
Jaime Gallardo-Alvarado ◽  
Mario A. García-Murillo ◽  
Eduardo Castillo-Castaneda

SUMMARYThis study addresses the kinematics of a six-degrees-of-freedom parallel manipulator whose moving platform is a regular triangular prism. The moving and fixed platforms are connected to each other by means of two identical parallel manipulators. Simple forward kinematics and reduced singular regions are the main benefits offered by the proposed parallel manipulator. The Input–Output equations of velocity and acceleration are systematically obtained by resorting to reciprocal-screw theory. A case study, which is verified with the aid of commercially available software, is included with the purpose to exemplify the application of the method of kinematic analysis.


Author(s):  
Chunxu Tian ◽  
Dan Zhang ◽  
Jian Liu

A conventional parallel manipulator is characterized by connecting one moving platform with two or more serial kinematic limbs. Since each limb is independently supporting one moving platform, the moving platform must be a rigid body with several kinematic pairs fixed on it. However, for generalized parallel manipulators with articulated moving platforms, the moving platforms are not limited to rigid bodies but including serial kinematic chains or internal kinematic joints. The introduction of articulated moving platforms allows for improving the kinematic performance of generalized parallel manipulators, especially for rotational capability. On account of the structural characteristics of the moving platforms, it also poses a significant challenge in the construction of the structures of manipulators. This research raises a new method for the type synthesis of generalized parallel manipulators with novel articulated moving platforms. The proposed method introduces a striking shortcut for the limb structure analysis of mechanisms with high rotational capability. In this paper, a class of generalized parallel manipulator with different degrees of freedom from 3 to 6 are constructed by using the constraint synthesis method, and several examples are provided to demonstrate the feasibility of the advocated method. At last, the 3T3R generalized parallel manipulator is taken as an example to analyze the inverse kinematics, and the evaluation of the workspace is conducted to verify the rotational capacity.


2005 ◽  
Vol 128 (4) ◽  
pp. 815-819 ◽  
Author(s):  
Nalluri Mohan Rao ◽  
K. Mallikarjuna Rao

This paper presents dimensional synthesis of a 3 degrees of freedom (DOF) spatial 3-revolute-prismatic-spherical (RPS) parallel manipulator. Tsai and Kim ((2003) ASME J. Mech. Des., 125, pp. 92–97) have shown that the dimensional synthesis can be carried out for at the most six prescribed positions and orientations of the moving platform. The method of synthesis is modified (least-square technique) to make it possible to synthesize the 3-RPS manipulator for any number of positions and orientations of the moving platform. The effectiveness of the modified method of synthesis is demonstrated by considering an example for ten-position synthesis. The modified method of synthesis is an approximation method.


Robotica ◽  
1997 ◽  
Vol 15 (4) ◽  
pp. 361-365 ◽  
Author(s):  
Andrew P. Murray ◽  
François Pierrot ◽  
Pierre Dauchez ◽  
J. Michael McCarthy

In this paper we present a technique for designing planar parallel manipulators with platforms capable of reaching any number of desired poses. The manipulator consists of a platform connected to ground by RPR chains. The set of positions and orientations available to the end-effector of a general RPR chain is mapped into the space of planar quaternions to obtain a quadratic manifold. The coefficients of this constraint manifold are functions of the locations of the base and platform R joints and the distance between them. Evaluating the constraint manifold at each desired pose and defining the limits on the extension of the P joint yields a set of equations. Solutions of these equations determine chains that contain the desired poses as part of their workspaces. Parallel manipulators that can reach the prescribed workspace are assembled from these chains. An example shows the determination of three RPR chains that form a manipulator able to reach a prescribed workspace.


2012 ◽  
Vol 162 ◽  
pp. 194-203
Author(s):  
A. Chaker ◽  
A. Mlika ◽  
M.A. Laribi ◽  
L. Romdhane ◽  
S. Zeghloul

The 3-RRR spherical parallel manipulator is known to be highly overconstrained, which causes several problems of mounting the mechanism, but has the advantage of having high rigidity thus a good precision. Several works in the literature proposed non-overconstrained versions of this mechanism. However, very few works dealt with the problem of the consequence of modifying an overconstrained mechanism into a non-overconstrained one, mainly from an accuracy point of view. In this work, we present an analysis of the accuracy of four different non-overconstrained SPMs, i.e., 3-RSR, 3-RCC, 3-RRS, and 3-RUU. These four SPM are then evaluated in translational and rotational accuracy due to manufacturing errors. The error on the position and orientation of the end-effector, due to manufacturing errors, are computed in 100 different configurations within their workspace. These SPMs are then compared among each other and we showed that the 3-RRS has the best compromise between the translational and rotational accuracy.


Author(s):  
Henrique Simas ◽  
Raffaele Di Gregorio

Schoenflies-motion generators (SMGs) are 4-degrees-of-freedom (dof) manipulators whose end effector can perform translations along three independent directions, and rotations around one fixed direction (Schoenflies motions). Such motions constitute the 4-dimensional (4-D) Schoenflies subgroup of the 6-D displacement group. The most known SMGs are the serial robots named SCARA. Pick-and-place tasks are typical industrial applications that SMGs can accomplish. In the literature, 3T1R parallel manipulators (PMs) have been also proposed as SMGs. Here, a somehow novel 3T1R PM is presented and studied. Its finite and instantaneous kinematics are analyzed in depth, and analytic and geometric tools that are useful for its design are presented. The proposed SMG has a single-loop not-overconstrained architecture with actuators on or near the base and can make the end effector perform a complete rotation.


2016 ◽  
Vol 836 ◽  
pp. 42-47 ◽  
Author(s):  
Latifah Nurahmi ◽  
Stéphane Caro

This paper deals with the formulation of the dimensionally homogeneous extended Jacobian matrix, which is an important issue for the performance analysis of f degrees-of-freedom (f ≤6) parallel manipulators having coupled rotational and translational motions. By using the f independent coordinates to define the permitted motions and (6-f) independent coordinates to define the restricted motions of the moving platform, the 6×6 dimensionally homogeneous extended Jacobian matrix is derived for non-redundant parallel manipulators. The conditioning number of the parallel manipulators is computed to evaluate the homogeneous extended Jacobian matrix, the homogeneous actuation wrench matrix, and the homogeneous constraint wrench matrix to evaluate the performance of the parallel manipulators. By using these indices, the closeness of a pose to different singularities can be detected. An illustrative example with the 3-RPS parallel manipulator is provided to highlight the effectiveness of the approach and the proposed indices.


2016 ◽  
Vol 40 (2) ◽  
pp. 139-154 ◽  
Author(s):  
Joshua K. Pickard ◽  
Juan A. Carretero

This paper deals with the wrench workspace (WW) determination of parallel manipulators. The WW is the set of end-effector poses (positions and orientations) for which the active joints are able to balance a set of external wrenches acting at the end-effector. The determination of the WW is important when selecting an appropriate manipulator design since the size and shape of the WW are dependent on the manipulator’s geometry (design) and selected actuators. Algorithms for the determination of the reachable workspace and the WW are presented. The algorithms are applicable to manipulator architectures utilizing actuators with positive and negative limits on the force/torque they can generate, as well as cable-driven parallel manipulator architectures which require nonnegative actuator limits to maintain positive cable tensions. The developed algorithms are demonstrated in case studies applied to a cable-driven parallel manipulator with 2-degrees-of-freedom and three cables and to a 3-RRR parallel manipulator. The approaches used in this paper provide guaranteed results and are based on methods utilizing interval analysis techniques for the representation of end-effector poses and design parameters.


Author(s):  
Hao Xiong ◽  
Xiumin Diao

A cable-driven parallel manipulator is driven by a set of cables instead of rigid links. Since cables usually have more flexibility than rigid links, the stiffness of a cable-driven parallel manipulator has been a concern for many applications that require controllable system stiffness. This paper studies how cables' strain and specific stiffness affect the stiffness of a cable-driven parallel manipulator that has p degrees of freedom and [Formula: see text] cables. A decoupled stiffness model of a cable-driven parallel manipulator is derived mathematically. In the decoupled stiffness model, cables' specific stiffness is decoupled from the other factors that affect the stiffness of the cable-driven parallel manipulator, namely, cable strains, positions of anchor points on the end-effector, and extended lengths and orientations of cables. The concept of stiffness change ratio is proposed to reflect how significantly the stiffness of a cable-driven parallel manipulator can be regulated at a specific pose. The decoupled stiffness model shows that it is cable strains, rather than just cable tensions, that determine the stiffness change ratio of a cable-driven parallel manipulator at a specific pose. It is mathematically proved that, at a specific pose, the stiffness change ratio of a cable-driven parallel manipulator using cables with an extended strain range is larger than or equal to that of the cable-driven parallel manipulator using cables with the original strain range.


Sign in / Sign up

Export Citation Format

Share Document