Numerical Continuation in a Physical Experiment: Investigation of a Nonlinear Energy Harvester

Author(s):  
David A. W. Barton ◽  
Stephen G. Burrow

In this paper we demonstrate the use of numerical continuation within a physical experiment: a nonlinear energy harvester, which is used to convert vibrational energy into usable electrical energy. To continue a branch of periodic orbits through a saddle-node bifurcation and along the associated branch of unstable periodic orbits, a modified time-delay controller is used. At each step in the continuation the pseudo-arclength equation is appended to a set of equations that ensure that the controller is non-invasive. The resulting nonlinear system is solved using a quasi-Newton iteration, where each evaluation of the nonlinear system requires changing the excitation parameters of the experiment and measuring the response. We present the continuation results for the energy harvester in a number of different configurations.

Author(s):  
David A. W. Barton ◽  
Stephen G. Burrow

In this paper, we demonstrate the use of control-based continuation within a physical experiment: a nonlinear energy harvester, which is used to convert vibrational energy into usable electrical energy. By employing the methodology of Sieber et al. (2008, “Experimental Continuation of Periodic Orbits Through a Fold,” Phys. Rev. Lett., 100(24), p. 244101), a branch of periodic orbits is continued through a saddle-node bifurcation and along the associated branch of unstable periodic orbits using a modified time-delay controller. At each step in the continuation, the pseudo-arclength equation is appended to a set of equations that ensure that the controller is noninvasive. The resulting nonlinear system is solved using a quasi-Newton iteration, where each evaluation of the nonlinear system requires changing the excitation parameters of the experiment and measuring the response. We present the continuation results for the energy harvester in a number of different configurations.


Author(s):  
Valeria Nico ◽  
Declan O’Donoghue ◽  
Ronan Frizzell ◽  
Gerard Kelly ◽  
Jeff Punch

Vibrational energy harvesting has become relevant as a power source for the reduced power requirement of electronics used in wireless sensor networks (WSNs). Vibrational energy harvesters (VEHs) are devices that can convert ambient kinetic energy into electrical energy using three principal transduction mechanisms: piezoelectric, electromagnetic and electrostatic. In this paper, a macroscopic two degree-of-freedom (2Dof) nonlinear energy harvester, which employs velocity amplification to enhance the power scavenged from ambient vibrations, is presented. Velocity amplification is achieved through sequential collisions between free-moving masses, and the final velocity is proportional to the mass ratio and the number of masses. Electromagnetic induction is chosen as the transduction mechanism because it can be readily implemented in a device which uses velocity amplification. The experimental results are presented in Part A of this paper, while in Part B three theoretical models are presented: (1) a coupled model where the two masses of the non-linear oscillator are considered as a coupled harmonic oscillators system; (2) an uncoupled model where the two masses are not linked and collisions between masses can occur; (3) a model that considers both the previous cases. The first two models act as necessary building blocks for the accurate development of the third model. This final model is essential for a better understanding of the dynamics of the 2-Dof device because it can represent the real behaviour of the system and captures the velocity amplification effect which is a key requirement of modelling device of interest in this work. Moreover, this model is essential for a future optimization of geometric and magnetic parameters in order to develop a MEMS scale multi-degree-of-freedom device.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1092 ◽  
Author(s):  
Bruno Andò ◽  
Salvatore Baglio ◽  
Adi R. Bulsara ◽  
Vincenzo Marletta

In this paper the possibility to exploit advantageously the Stochastic Resonance phenomenon in a Nonlinear Energy Harvester to scavenge energy from wide band mechanical vibrations is experimentally demonstrated. The device is demonstrated to be capable of scavenging energy in case of a subthreshold sinusoidal vibration and a wideband noise (limited at 100 Hz) superimposed. The existence of an optimal value of the noise intensity maximizing the switching ratio of the bistable beam, then the performances, is experimentally demonstrated. The harvester is observed to generate power up to about 60 µW and 150 µW in case of a subthreshold sinusoidal input at 1 Hz and 3 Hz with a superimposed noise limited at 100 Hz.


Author(s):  
Valeria Nico ◽  
Elisabetta Boco ◽  
Ronan Frizzell ◽  
Jeff Punch

In recent years, the development of small and low power electronics has led to the deployment of Wireless Sensor Networks (WSNs) that are largely used in military and civil applications. Vibrational energy harvesting can be used to power these sensors in order to obviate the costs of battery replacement. Vibrational energy harvesters (VEHs) are devices that convert the kinetic energy present in the ambient into electrical energy using three principal transduction mechanisms: piezoelectric, electromagnetic or electrostatic. The investigation presented in this paper specifically aims to realize a device that converts vibrations from different ambient sources to electrical energy for powering autonomous wireless sensors. A “C-battery” scale (25.5 mm diameter by 57.45 mm long, 29.340 cm3) two Degree-of-Freedom (2-DoF) nonlinear electromagnetic energy harvester, which employs velocity amplification, is presented in this paper. Velocity amplification is achieved through sequential collisions between two free-moving masses, a primary (larger) and a secondary (smaller) mass. The nonlinearities are due to the use of multiple masses and the use of magnetic springs between the primary mass and the housing, and between the primary and secondary masses. Part A of this paper presents a detailed experimental characterization of the system dynamics, while Part B describes the design and verification of the magnet/coil interaction for optimum prototype power output. The harvester is characterized experimentally under sinusoidal excitation for different geometrical configurations and also under the excitation of an air-compressor. The maximum output power generated under sinusoidal excitation of arms = 0.4 g is 1.74 mW across a resistive load of 9975 Ω, while the output rms voltage is 4.2 V. Under the excitation of the compressor, the maximum peak power across a load resistance of 8660 Ω is 1.37 mW, while the average power is 85.5 μW.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 201-210
Author(s):  
Yoshikazu Tanaka ◽  
Satoru Odake ◽  
Jun Miyake ◽  
Hidemi Mutsuda ◽  
Atanas A. Popov ◽  
...  

Energy harvesting methods that use functional materials have attracted interest because they can take advantage of an abundant but underutilized energy source. Most vibration energy harvester designs operate most effectively around their resonant frequency. However, in practice, the frequency band for ambient vibrational energy is typically broad. The development of technologies for broadband energy harvesting is therefore desirable. The authors previously proposed an energy harvester, called a flexible piezoelectric device (FPED), that consists of a piezoelectric film (polyvinylidene difluoride) and a soft material, such as silicon rubber or polyethylene terephthalate. The authors also proposed a system based on FPEDs for broadband energy harvesting. The system consisted of cantilevered FPEDs, with each FPED connected via a spring. Simply supported FPEDs also have potential for broadband energy harvesting, and here, a theoretical evaluation method is proposed for such a system. Experiments are conducted to validate the derived model.


2017 ◽  
Vol 137 (6) ◽  
pp. 152-158
Author(s):  
Satoshi Inoue ◽  
Takuya Takahashi ◽  
Momoko Kumemura ◽  
Kazunori Ishibashi ◽  
Hiroyuki Fujita ◽  
...  

2020 ◽  
Vol 29 (2) ◽  
pp. 025022 ◽  
Author(s):  
Bo Yan ◽  
Ning Yu ◽  
Lu Zhang ◽  
Hongye Ma ◽  
Chuanyu Wu ◽  
...  

2021 ◽  
Vol 1736 ◽  
pp. 012032
Author(s):  
G Litak ◽  
B Ambrożkiewicz ◽  
P Wolszczak

Sign in / Sign up

Export Citation Format

Share Document