Viscoelastic Damping Effect on Brake Squeal Noise

Author(s):  
Gael Chevallier ◽  
Franck Renaud ◽  
Jean-Luc Dion

Brake squeal remains a widespread cause for discomfort in automobiles. Manufacturers overcome this problem by adding damping materials in their systems. The purpose of this work is to take into account the damping in the modeling. As the materials exhibit a viscoelastic behavior, the authors chose to model the damping with the Generalized Maxwell model. Moreover, the authors have tested their method on a detailed Finite Element-model of a brake system. To compute the complex poles of the model, the authors have established a state-space formulation of the viscoelastic model with a new assumption that allows one to reduce the number of states. Making the computation on the whole model is rather difficult due to the number of Degrees Of Freedom, the model is thus reduced on a basis constituted with the eigenvectors of the undamped model. Several results are also presented and discussed as the observed phenomena are rather different from the results obtained with undamped systems.

1997 ◽  
Vol 64 (1) ◽  
pp. 201-208 ◽  
Author(s):  
W. R. Qualls ◽  
J. K. Good

A realistic and adaptive viscoelastic model for prediction of transient wound roll stress distributions is presented. The web material is taken to be orthotropic with a nonlinear radial stiffness dependent upon interlayer pressure. Viscoelastic behavior is represented by a generalized Maxwell model for creep written as a convolution integral. Numerical solutions to the resulting integral boundary value problem give both initial and transient stress distributions within the wound roll. The model is successfully compared to the analytical solution for a simple case of isotropy as well as to published works on this topic. In contrasting the solutions, the advantages and adaptability of this formulation will be readily seen.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881745 ◽  
Author(s):  
Ying Zhang ◽  
Zhanghua Lian ◽  
Mi Zhou ◽  
Tiejun Lin

At the high or extra-high temperatures in a natural gas oilfield, where the premium connection is employed by casing, gas leakage in the wellbore is always detected after several years of gas production. As the viscoelastic material’s mechanical properties change with time and temperature, the relaxation of the contact pressure on the connection sealing surface is the main reason for the gas leakage in the high-temperature gas well. In this article, tension-creep experiments were conducted. Furthermore, a constitutive model of the casing material was established by the Prony series method. Moreover, the Prony series’ shift factor was calculated to study the thermo-rheological behavior of the casing material ranging from 120°C to 300°C. A linear viscoelastic model was implemented in ABAQUS, and the simulation results are compared to our experimental data to validate the methodology. Finally, the viscoelastic finite element model is applied to predict the relaxation of contact pressure on the premium connections’ sealing surface versus time under different temperatures. And, the ratio of the design contact pressure and the intending gas sealing pressure is recommended for avoiding the premium connections failure in the high-temperature gas well.


Author(s):  
Yongbin Yuan

Abstract Brake squeal is caused by friction-induced vibration of brake systems. It may take place due to several possible mechanisms. The inverse variation of friction coefficient with relative sliding speed, also called negative μ-v slope, is one of them. Although it has been demonstrated in many articles that negative μ-v slope can cause unstable vibration for systems with a single degree of freedom (d.o.f.), its effects on multi-d.o.f. brake systems are not yet well understood. Since almost all types of friction materials for automotive brakes exhibit negative μ-v slope under certain conditions, it is important to clarify its role in brake squeal. The current study incorporates the negative μ-v slope friction law into a Finite element model for disc brake systems. The rotor and pads are modeled by beam elements, and the caliper is represented by a rigid body with two degrees of freedom. The effects of negative μ-v slope on the vibration stability of a brake system are studied along with several parameters including friction level, lining compression modulus, and steelback thickness.


Author(s):  
L. C. Hau ◽  
Eric H. K. Fung

The finite element method, in conjunction with the Golla-Hughes-McTavish (GHM) viscoelastic model, is employed to model a clamped-free beam partially treated with active constrained layer damping (ACLD) elements. The governing equations of motion are converted to a state-space form for control system design. Prior to this, since the resultant finite element model has too many degrees of freedom due to the addition of dissipative coordinates, a model reduction is performed to revert the system back to its original size. Finally, optimal output feedback gains are designed based on the reduced models. Numerical simulations are performed to study the effect of different element configurations, with various spacing and locations, on the vibration control performance of a “smart” flexible ACLD treated beam. Results are presented for the damping ratios of the first two modes of vibration. It is found that improvement on the second mode damping can be achieved by splitting a single ACLD element into two and placing them at appropriate positions of the beam.


2016 ◽  
Vol 84 (2) ◽  
Author(s):  
Charles S. Wojnar ◽  
Dennis M. Kochmann

Microstructural mechanisms such as domain switching in ferroelectric ceramics dissipate energy, the nature, and extent of which are of significant interest for two reasons. First, dissipative internal processes lead to hysteretic behavior at the macroscale (e.g., the hysteresis of polarization versus electric field in ferroelectrics). Second, mechanisms of internal friction determine the viscoelastic behavior of the material under small-amplitude vibrations. Although experimental techniques and constitutive models exist for both phenomena, there is a strong disconnect and, in particular, no advantageous strategy to link both for improved physics-based kinetic models for multifunctional rheological materials. Here, we present a theoretical approach that relates inelastic constitutive models to frequency-dependent viscoelastic parameters by linearizing the kinetic relations for the internal variables. This enables us to gain qualitative and quantitative experimental validation of the kinetics of internal processes for both quasistatic microstructure evolution and high-frequency damping. We first present the simple example of the generalized Maxwell model and then proceed to the case of ferroelectric ceramics for which we predict the viscoelastic response during domain switching and compare to experimental data. This strategy identifies the relations between microstructural kinetics and viscoelastic properties. The approach is general in that it can be applied to other rheological materials with microstructure evolution.


2021 ◽  
Vol 93 ◽  
pp. 106989
Author(s):  
Atefeh Salimi ◽  
Foroud Abbassi-Sourki ◽  
Mohammad Karrabi ◽  
Mir Hamid Reza Ghoreishy

Author(s):  
A. Vidal-Lesso ◽  
E. Ledesma-Orozco ◽  
R. Lesso-Arroyo ◽  
L. Daza-Benitez

Biomechanical properties and dynamic response of soft tissues as articular cartilage remains issues for attention. Currently, linear isotropic models are still used for cartilage analysis in spite of its viscoelastic nature. Therefore, the aim of this study was to propose a nonlinear viscoelastic model for cartilage indentation that combines the geometrical parameters and velocity of the indentation test with the thickness of the sample as well as the mechanical properties of the tissue changing over time due to its viscoelastic behavior. Parameters of the indentation test and mechanical properties as a function of time were performed in Laplace space where the constitutive equation for viscoelasticity and the convolution theorem was applied in addition with the Maxwell model and Hayes et al. model for instantaneous elastic modulus. Results of the models were compared with experimental data of indentation tests on osteoarthritic cartilage of a unicompartmental osteoarthritis cases. The models showed a strong fit for the axial indentation nonlinear force in the loading curve (R2 = 0.992) and a good fit for unloading (R2 = 0.987), while an acceptable fit was observed in the relaxation curve (R2 = 0.967). These models may be used to study the mechanical response of osteoarthritic cartilage to several dynamical and geometrical test conditions.


Author(s):  
Isabella Bozzo ◽  
Marco Amabili ◽  
Prabakaran Balasubramanian ◽  
Ivan Breslavsky ◽  
Giovanni Ferrari

Abstract Heart disease is the second leading cause of death in Canada resulting in $20.9 billion annual healthcare expenditures [1,2]. Understanding the mechanics of the human descending thoracic aorta is fundamental for comprehending the development of pathologies and improving surgical prostheses. This study presents hyperelastic and viscoelastic material characterizations of the human descending thoracic aorta from twelve different donors, with a mean age of 49.4 years. The specimens were dissected into the three constituent layers: intima, media and adventitia. Evaluating the layer-specific opening angles led to the computation of the circumferential residual stresses. Uniaxial tensile tests of each layer, in both the circumferential and axial direction, were used to model the hyperelastic behavior according to the Gasser-Ogden-Holzapfel model (GOH). The storage modulus and loss tangent for the layers were obtained from uniaxial harmonic excitations at varied frequencies, to model the viscoelastic behavior with the generalized Maxwell model. The results showed a positive correlation between age and stiffness for all layers, both axially and circumferentially. Similar loss tangent values were found across the three layers. A large increase in the storage modulus from static to dynamic experiments further corroborates the importance of a viscoelastic model of the aorta, rather than solely hyperelastic.


2011 ◽  
Vol 25 (3) ◽  
pp. 991-1010 ◽  
Author(s):  
Franck Renaud ◽  
Jean-Luc Dion ◽  
Gaël Chevallier ◽  
Imad Tawfiq ◽  
Rémi Lemaire

Author(s):  
J-P Park ◽  
Y-S Choi

To understand brake squeal noise, the sound and vibration of an automobile brake system were measured using a brake dynamometer. The experimental results show that an important factor in squeal generation is the run-out due to disc misalignment. A three-degrees-of-freedom model is developed for the brake system, where the run-out effect and non-linear friction characteristic are included. A stability analysis of the model was also performed to predict the generation of squeal with the modification of the brake system. The results show that squeal generation is dependent on the run-out rather than the friction characteristic between the pad and disc.


Sign in / Sign up

Export Citation Format

Share Document