Performance Characteristics of a Smart Flexible Beam With Distributed ACLD Elements

Author(s):  
L. C. Hau ◽  
Eric H. K. Fung

The finite element method, in conjunction with the Golla-Hughes-McTavish (GHM) viscoelastic model, is employed to model a clamped-free beam partially treated with active constrained layer damping (ACLD) elements. The governing equations of motion are converted to a state-space form for control system design. Prior to this, since the resultant finite element model has too many degrees of freedom due to the addition of dissipative coordinates, a model reduction is performed to revert the system back to its original size. Finally, optimal output feedback gains are designed based on the reduced models. Numerical simulations are performed to study the effect of different element configurations, with various spacing and locations, on the vibration control performance of a “smart” flexible ACLD treated beam. Results are presented for the damping ratios of the first two modes of vibration. It is found that improvement on the second mode damping can be achieved by splitting a single ACLD element into two and placing them at appropriate positions of the beam.

Author(s):  
Gennady Mikheev ◽  
Dmitry Pogorelov ◽  
Oleg Dmitrochenko ◽  
Raju Gandikota

Two approaches for simulation of dynamics of complex beam structures such as drill strings are considered. In the first approach, the drill string is presented as a set of uniform beams connected via force elements. The beams can undergo arbitrary large displacements as absolutely rigid bodies but its flexible displacements due to elastic deformations are assumed to be small. Flexibility of the beams is simulated using the modal approach. Thus, each beam has at least twelve degrees of freedom: six coordinates define position and orientation of a local frame and six modes are used for modeling flexibility. The second approach is dynamic simulation of the drill string using nonlinear finite element model. The proposed beam finite element uses Cartesian coordinates of its nodes and node rotation angles around axis of Cartesian coordinate system as generalized coordinates. The nonlinear finite element is developed based on method of large rotation vectors. Rotation angles in the nodes can be arbitrary large. Equations of motion of beam structure are derived in the paper. The number of degrees of freedom is decreased by factor two as compared with the modal approach. Thereby, computational efficiency under simulation of dynamics of long drill strings is considerably increased. The features of creating the models and numerical methods as well as results obtained by applying both approaches are discussed in the paper.


2001 ◽  
Author(s):  
Veli-Matti Järvenpää ◽  
Erno K. Keskinen

Abstract In this paper a finite element model of a rotating paper machine roll for nip unit rolling contact analyses is discussed. This work presented here is based on the earlier work of the authors presented in [1] and [2]. The major motivations for developing a tailored FE-model including the large spin rotation are firstly to include the complex vibration phenomena as the shell vibrations of the roll structure in the analyses and secondly to reduce the computational costs of the numerical simulations due to the large number of degrees of freedom. The approach used is the use of the modal analysis i.e. to express the dynamics of the roll in terms of the lowest eigenmodes. The equations of motion are at first written in the rotating coordinates and then in addition to this the equations are expressed by using the modal coordinates. Numerical tests executed show that this modeling technique reduces computational costs significantly. Furthermore, use of the (semidefinite) eigenmode basis maintains the vibration characteristics of the roll structure. For verification purposes a test model was constructed and these simulation results were compared to the standard geometrically non-linear finite element analysis.


2020 ◽  
Vol 1 (1) ◽  
pp. 93-102
Author(s):  
Carsten Strzalka ◽  
◽  
Manfred Zehn ◽  

For the analysis of structural components, the finite element method (FEM) has become the most widely applied tool for numerical stress- and subsequent durability analyses. In industrial application advanced FE-models result in high numbers of degrees of freedom, making dynamic analyses time-consuming and expensive. As detailed finite element models are necessary for accurate stress results, the resulting data and connected numerical effort from dynamic stress analysis can be high. For the reduction of that effort, sophisticated methods have been developed to limit numerical calculations and processing of data to only small fractions of the global model. Therefore, detailed knowledge of the position of a component’s highly stressed areas is of great advantage for any present or subsequent analysis steps. In this paper an efficient method for the a priori detection of highly stressed areas of force-excited components is presented, based on modal stress superposition. As the component’s dynamic response and corresponding stress is always a function of its excitation, special attention is paid to the influence of the loading position. Based on the frequency domain solution of the modally decoupled equations of motion, a coefficient for a priori weighted superposition of modal von Mises stress fields is developed and validated on a simply supported cantilever beam structure with variable loading positions. The proposed approach is then applied to a simplified industrial model of a twist beam rear axle.


2002 ◽  
Vol 8 (6) ◽  
pp. 877-902 ◽  
Author(s):  
W. Laplante ◽  
T. Chen ◽  
A. Baz ◽  
W. Sheilds

Vibration and sound radiation from fluid-loaded cylindrical shells are controlled using patches of Active Constrained Layer Damping (ACLD). The performance and the enhanced damping characteristics via reduced vibrations and sound radiation in the surrounding fluid is demonstrated both theoretically and experimentally. A prime motivation for this work is the potential wide applications in submarines and torpedoes where acoustic stealth is critical to the effectiveness of missions. A finite element model is also developed to predict the vibration and the acoustic radiation in the surrounding fluid of the ACLD-treated cylinders. The developed model is used to study the effectiveness of the control and placement strategies of the ACLD in controlling the fluid-structure interactions. A water tank is constructed that incorporates test cylinders treated with two ACLD patches placed for targeting specific vibration modes. Using this arrangement, the effectiveness of different control strategies is studied when the submerged cylinders are subjected to internal excitation, and the radiated sound pressure level in the water is observed. Comparisons are made between the experimental results and the theoretical predictions to validate the finite element model.


1999 ◽  
Author(s):  
S. A. Lipsey ◽  
Y. W. Kwon

Abstract Damage reduces the flexural stiffness of a structure, thereby altering its dynamic response, specifically the natural frequency, damping values, and the mode shapes associated with each natural frequency. Considerable effort has been put into obtaining a correlation between the changes in these parameters and the location and amount of the damage in beam structures. Most numerical research employed elements with reduced beam dimensions or material properties such as modulus of elasticity to simulate damage in the beam. This approach to damage simulation neglects the non-linear effect that a crack has on the different modes of vibration and their corresponding natural frequencies. In this paper, finite element modeling techniques are utilized to directly represent an embedded crack. The results of the dynamic analysis are then compared to the results of the dynamic analysis of the reduced modulus finite element model. Different modal parameters including both mode shape displacement and mode shape curvature are investigated to determine the most sensitive indicator of damage and its location.


2020 ◽  
Author(s):  
Brady D. Hislop ◽  
Chelsea M. Heveran ◽  
Ronald K. June

AbstractFluid transport between cartilage and bone is critical to joint health. The objective of this study was to develop and analytically validate a finite element model of osteochondral tissue capable of modeling cartilage-bone fluid transport. A biphasic viscoelastic model using an ellipsoidal fiber distribution was created with three distinct layers of cartilage (superficial zone, middle zone, and deep zone) along with a layer of subchondral bone. For stress-relaxation in unconfined compression, our results for compressive stress, radial stress, effective fluid pressure, and elastic recoil were compared with established biphasic analytical solutions. Our model also shows the development of fluid pressure gradients at the cartilage-bone interface during loading. Fluid pressure gradients developed at the cartilage-bone interface with consistently higher pressures in cartilage following initial loading to 10% strain, followed by convergence towards equal pressures in cartilage and bone during the 400s relaxation period. These results provide additional evidence that fluid is transported between cartilage and bone during loading and improves upon estimates of the magnitude of this effect through incorporating a realistic distribution and estimate of the collagen ultrastructure. Understanding fluid transport between cartilage and bone may be key to new insights about the mechanical and biological environment of both tissues in health and disease.


Author(s):  
Jordan J. Cox ◽  
Jeffrey A. Talbert ◽  
Eric Mulkay

Abstract This paper presents a method for naturally decomposing finite element models into sub-models which can be solved in a parallel fashion. The unique contribution of this paper is that the decomposition strategy comes from the geometric features used to construct the solid model that the finite element model represents. Domain composition and domain decomposition methods are used to insure global compatibility. These techniques reduce the N2 behavior of traditional matrix solving techniques, where N is the number of degrees of freedom in the global set of matrix equations, to a sum of m matrices with n2 behavior, where n represents the number of degrees of freedom in the smaller sub-model matrix equations.


2000 ◽  
Author(s):  
Tammy Haut Donahue ◽  
Maury L. Hull ◽  
Mark M. Rashid ◽  
Christopher R. Jacobs

Abstract A finite element model of the tibio-femoral joint in the human knee was created using a new technique for developing accurate solid models of soft tissues (i.e. cartilage and menisci). The model was used to demonstrate that constraining rotational degrees of freedom other than flexion/extension when the joint is loaded in compression markedly affects the load distribution between the medial and lateral sides of the joint. The model also was used to validate the assumption that the bones can be treated as rigid.


2020 ◽  
Vol 10 (15) ◽  
pp. 5102
Author(s):  
Carlos Valencia Murillo ◽  
Miguel Gutierrez Rivera ◽  
Junuthula N. Reddy

In this paper, a seven-parameter spectral/hp finite element model to obtain natural frequencies in shell type structures is presented. This model accounts for constant and variable thickness of shell structures. The finite element model is based on a Higher-order Shear Deformation Theory, and the equations of motion are obtained by means of Hamilton’s principle. Analysis is performed for isotropic linear elastic shells. A validation of the formulation is made by comparing the present results with those reported in the literature and with simulations in the commercial code ANSYS. Finally, results for shell like structures with variable thickness are presented, and their behavior for different ratios r/h and L/r is studied.


2012 ◽  
Vol 157-158 ◽  
pp. 1000-1003
Author(s):  
Ke Wei Zhou ◽  
Cheol Kim ◽  
Min Ok Yun ◽  
Ju Young Kim

The improved equations of motion for a friction-engaged brake system have been newly derived on the basis of the assumed mode method and frictional damping. The equations of motion with a finite element model were constructed by a set of vibration modes found from FE modal analysis on all system components. Consequently, the modal information of system components are combined with equations of motion derived from the analytical model. Numerical analysis showed the mode which was unstable in an undamped case became stable in a damped case.


Sign in / Sign up

Export Citation Format

Share Document