Finite Element Modeling and Analysis of Orthotropic Butt Welds

Author(s):  
Masoud Mojtahed ◽  
Qingtian Cai

Butt welds with orthotropic behavior are widely applied in mechanical and structural designs. Since welds cannot always be perfect in practice, it is important to understand the weld’s stress behavior under different imperfect geometries. In this paper research has been performed to investigate the relationship between stress intensity factors and change of geometry of orthotropic butt welds. Finite element methods were applied to simulate weld geometries. The simulation was performed using ANSYS software assuming two beams are welded together with a discontinuity at the bottom of the weld. The combined beams and the butt weld are then considered to be one piece of glued structure. The discontinuity in the structure is used to model a crack and lack of weld penetration. By changing three important factors of the weld geometry under uniform axial static loads, the trend of stress intensity factor behavior versus change of geometry has been investigated. Both single and double sided butt welds were considered in this paper. The results of this investigation will be a helpful tool for design engineers in deciding the best weld geometry in applications.

Author(s):  
Chang-Young Oh ◽  
Ji-Soo Kim ◽  
Yun-Jae Kim ◽  
Young-Jin Oh ◽  
Kyoungsoo Lee ◽  
...  

This paper proposes a simple method to estimate stress intensity factors due to welding residual stresses. In this study, finite element analyses for circumferentially cracked pipe are performed to calculate stress intensity factors. Four cracked geometries and two types of weld geometry are considered. KI-solutions for the nonlinear stress distribution on the crack face were determined in accordance with codes and standards. The results are compared with KI-solutions from finite element results. It is found that proposed simple method agrees well with FE results.


Author(s):  
Edmund J. Sullivan ◽  
Aladar A. Csontos ◽  
Timothy R. Lupold ◽  
Chia-Fu Sheng

On October 13, 2006, the Wolf Creek Nuclear Operating Corporation performed preweld overlay inspections using manual ultrasonic testing (UT) techniques on the surge, spray, relief, and safety nozzle-to-safe end dissimilar metal (DM) and safe end-to-pipe stainless steel butt welds. The inspection identified five circumferential indications in the surge, relief, and safety nozzle-to-safe end DM butt welds that the licensee attributed to primary water stress corrosion cracking (PWSCC). These indications were significantly larger and more extensive than previously seen for the case of circumferential indications in commercial pressurized water reactors. As a result of the NRC staff’s initial flaw growth analyses, the NRC staff obtained commitments from the nuclear power industry licensees to complete pressurizer nozzle DM butt weld inspections on an accelerated basis. In addition, the industry informed the NRC staff that it would undertake a task to refine the crack growth analyses using more realistic assumptions to address the NRC staff’s concerns regarding the potential for rupture without prior evidence of leakage from circumferentially oriented PWSCC in pressurizer nozzle welds. These new analyses are referred to as advanced finite element (AFE) analyses. This paper will discuss the regulatory review of the industry’s AFE analyses. This discussion will include the NRC staff’s approach to the review, the differences between the industry’s AFE analyses and the NRC staff’s confirmatory analyses, and the NRC staff’s acceptance criteria. The paper will discuss the impact of the AFE analyses on the regulatory process. Finally, the paper will discuss possible future regulatory and research applications for AFE analyses as well as additional NRC research projects intended to address some of the uncertainties in this type of analysis.


1993 ◽  
Vol 115 (4) ◽  
pp. 417-423 ◽  
Author(s):  
Y. Ueda ◽  
M. G. Yuan

The source of residual stresses in the vicinity of a weld may be expressed in terms of inherent strains. The characteristics of the inherent strain distributions in butt welds are investigated. It is found that the patterns vary little with changes in the welding conditions and sizes of the welded plates. With some assumptions, simple formulas are derived for the distribution and magnitude of inherent strain in a butt weld. A method of predicting the residual stress in a butt-welded plate using the characteristics of inherent strain distributions is presented. The validity of the method is confirmed by thermal elasto-plastic analysis using the finite element method (FEM).


Author(s):  
Kulthida Sripichai ◽  
Kamran Asim ◽  
Jwo Pan

In this paper, the effects of weld geometry on the stress intensity factor solutions for laser welds in lap-shear specimens are investigated. Analytical stress intensity factor solutions for laser welded lap-shear specimens based on the beam bending theory are derived and compared with the analytical solutions for two semi-infinite solids with connection. Finite element analyses of laser welded lap-shear specimens with different weld widths were also conducted to obtain the stress intensity factor solutions. Approximate closed-form stress intensity factor solutions based on the results of the finite element analyses in combination with the analytical solutions based on the beam bending theory and Westergaard stress function for a full range of the normalized weld widths are developed for use with the stress intensity factor solutions for kinked cracks to correlate and estimate fatigue lives of laser welded lap-shear specimens. The effects of the weld protrusion on the stress intensity factor solutions for the pre-existing cracks in lap-shear specimens are also investigated. The presence of the weld protrusion decreases the stress intensity factor solutions for the pre-existing crack near the weld protrusion for the load carrying sheets and the lower stress intensity factor solutions can be used to explain more favorable conditions for kinked fatigue crack propagation from the other pre-existing crack tip and to estimate fatigue lives of laser welded lap-shear specimens under high cycle loading conditions as observed in experiments.


Author(s):  
Fengjie Yin ◽  
Mark Cerkovnik ◽  
Wasy Akhtar ◽  
Tracy Yang

In checking the fitness of fatigue critical welded structure, the stress concentration at the weld due to the weld geometry needs to be considered. Where fatigue is assessed using crack growth methodology, two approaches are commonly used. In the offshore industry in regions where BS 7910 [1] is followed, the effect of weld geometry is assessed using the Mk factor approach. The Mk factor directly magnifies the stress intensity. Mk factor solutions are available for T-butt weld joints from the British Standard BS7910. Alternatively, API579 [2] offers stress intensity solutions that can account for the stress profile through the wall thickness of the pipe. In using this method, the engineer will use an FEA program to find the stress profile for use as an input for the stress intensity factor computation. Since the goal is the assessment of crack growth, the stress profile must represent the cyclic changes in stress. Further, a histogram of such profiles is required. While the Mk factor approach of BS7910 offers the easier path by supplying factors for pre-solved geometries, the API approach offers an opportunity to refine the solution by conducting relatively simple linear FEA of the un-cracked component. This study compares the two approaches using an example taken from offshore riser fatigue analysis.


Author(s):  
Maan-Won Kim ◽  
Young-Jong Kim ◽  
Byoung Chul Kim

Primary water stress corrosion cracking (PWSCC) of Alloy 82/182 butt welds has been a concern for pressurized water reactor (PWR) plants worldwide for the past decade. A lot of works have been performed to calculate exact welding residual stresses and PWSCC growth rate for Alloy 82/182 butt welds. The PWSCC growth analysis of Alloy 82/182 butt welds has been performed by using the Raju-Newman type solutions for the crack tip stress intensity factors (SIFs). In this study, a finite element alternating method (FEAM) was used to calculate the SIFs and crack propagation in Alloy 82/182 butt weld. The FEAM is consisted of two solution parts: an exact theoretical SIF solution for a crack embedded in infinite body and a simple finite element analysis model with coarse mesh for finite body. In this study, the theoretical SIFs were derived by using a dislocation density function. Finite element (FE) analysis was performed to obtain the welding residual stress distribution for a nozzle with Alloy 82/182 butt weld and PWSCC growth analysis was performed by using the FEAM with PWSCC growth model described in MRP reports under welding residual stress along the nozzle thickness.


Author(s):  
A. P. Warren ◽  
S. K. Bate ◽  
R. Charles ◽  
D. M. O’Gara ◽  
P. M. Wood ◽  
...  

The inherent complexity of modelling welding processes and the lack of computational power available to analysts has resulted in simplified methods being commonly utilised when predicting residual stresses. Despite considerable advances in computational power, it is still often not possible to run detailed 3D analyses of complex welded geometries within practical timescales. Against this background, a programme of work has been undertaken to develop a weld modelling procedure which can be followed by analysts. This procedure will account for how various modelling simplifications affect the predicted values of residual stress. One common geometry, which it is often necessary to analyse using modelling simplifications is that of a thin-walled pipe butt weld. Typically this geometry is simulated using a 2D axisymmetric analysis. Despite the popularity of this modelling simplification the effects of its use are not fully understood. In order to feed into this procedure, work has therefore been conducted to better understand the effects modelling simplifications will have on the residual stress levels that are predicted when simulating multi-pass pipe butt welds. The geometry considered in this study is the thin walled austenitic pipe butt weld specimen originally studied in VORSAC 5th Framework European Union project. This paper presents the results of a number of finite element analyses conducted of this geometry. These analyses have been conducted using a combination of the finite element codes SYSWELD and ABAQUS. The aim of this study was to understand the effect that the use of 2D axisymmetric analyses, and other modelling simplifications, namely block dumping and bead lumping will have on the predicted values of residual stress.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1337-1345
Author(s):  
Chuan Zhao ◽  
Feng Sun ◽  
Junjie Jin ◽  
Mingwei Bo ◽  
Fangchao Xu ◽  
...  

This paper proposes a computation method using the equivalent magnetic circuit to analyze the driving force for the non-contact permanent magnet linear drive system. In this device, the magnetic driving force is related to the rotation angle of driving wheels. The relationship is verified by finite element analysis and measuring experiments. The result of finite element simulation is in good agreement with the model established by the equivalent magnetic circuit. Then experiments of displacement control are carried out to test the dynamic characteristic of this system. The controller of the system adopts the combination control of displacement and angle. The results indicate that the system has good performance in steady-state error and response speed, while the maximum overshoot needs to be reduced.


2019 ◽  
Author(s):  
Chem Int

Mathematical model was developed and evaluated to monitor and predict the groundwater characteristics of Trans-amadi region in Port Harcourt City. In this research three major components were considered such as chloride, total iron and nitrate concentration as well as the polynomial expression on the behavious on the concentration of each component was determined in terms of the equation of the best fit as well as the square root of the curve. The relationship between nitrate and distance traveled by Nitrate concentration by the model is given as Pc = 0.003x2 - 0.451x + 14.91with coefficient of determination, R² = 0.947, Chloride given as Pc = 0.000x2 - 0.071x + 2.343, R² = 0.951while that of Total Iron is given as Pc = 2E-05x2 - 0.003x + 0.110, R² = 0.930. All these show a strong relationship as established by Polynomial Regression Model. The finite element techniques are found useful in monitoring, predicting and simulating groundwater characteristics of Trans-amadi as well as the prediction on the variation on the parameters of groundwater with variation in time.


Sign in / Sign up

Export Citation Format

Share Document