Resonance and Anti-Resonance Phenomenon in Granular Dimer Chains With No Pre-Compression

Author(s):  
K. R. Jayaprakash ◽  
Yuli Starosvetsky ◽  
Alexander F. Vakakis

It is a well known fact that many interesting phenomena in the theory of waves in nonlinear lattices, e.g., the significant reduction of the amplitude of a propagating primary pulse or the essential growth of the phase velocity, may be explained in terms of various resonant mechanisms existing in the system (e.g. Frankel-Kontorova model). Recently, we have demonstrated analytically and numerically that similar resonant mechanisms also exist in periodically disordered granular chains with no pre-compression. Moreover, these mechanisms are responsible for the aforementioned phenomena of intensive pulse attenuation as well as speeding up of solitary waves in periodic granular chains. In our studies we have considered regular dimer chains consisting of pairs of ‘heavy’ and ‘light’ beads with no pre compression and with elastic Hertzian interaction between beads. A new family of solitary waves was discovered for these systems. These solitary waves may be considered analogous to the solitary wave of a homogeneous chain studied by Nesterenko [1], in the sense that they do not involve separations between beads, but rather satisfy special symmetries or, equivalently resonances in the dynamics. We show that these solitary waves arise from a countable infinity (we conjecture) of nonlinear anti-resonances in the dimer chains. Moreover, solitary waves in the dimers propagate faster than solitary waves in the homogeneous granular chain obtained in the limit of no mass mismatch (i.e., composed of only ‘heavy’ beads). This finding, which might seem to be counter intuitive, indicates that under certain conditions nonlinear anti-resonances can increase the speed of disturbance propagation in disordered granular media, by generating new ways of transferring energy to the far field in these media. Finally, we discuss a contrasting resonance mechanism that leads to the opposite effect, that is, very efficient shock attenuation in the dimer chain. Indeed, we show that under a certain nonlinear resonance condition a granular dimer chain can greatly reduce the amplitude of propagating pulses, through effective scattering of the energy of the pulse to higher frequencies and excitation of alternative intrinsic dynamics of the dimer. This resonance condition may be theoretically predicted and explained, and a very fair correspondence is observed between the analytical solutions and direct numerical simulations. From a practical point of view, these results can have interesting implications in applications where granular media are employed as shock transmitters or attenuators.

2017 ◽  
Vol 31 (10) ◽  
pp. 1742001 ◽  
Author(s):  
Yuli Starosvetsky ◽  
K. R. Jayaprakash ◽  
Alexander F. Vakakis

We provide a review of propagating traveling waves and solitary pulses in uncompressed one-dimensional ([Formula: see text]) ordered granular media. The first such solution in homogeneous granular media was discovered by Nesterenko in the form of a single-hump solitary pulse with energy-dependent profile and velocity. Considering directly the discrete, strongly nonlinear governing equations of motion of these media (i.e., without resorting to continuum approximation or homogenization), we show the existence of countably infinite families of stable multi-hump propagating traveling waves with arbitrary wavelengths. A semi-analytical approach is used to study the dependence of these waves on spatial periodicity (wavenumber) and energy, and to show that in a certain asymptotic limit, these families converge to the single-hump Nesterenko solitary wave. Then the study is extended in dimer granular chains composed of alternating “heavy” and “light” beads. For a set of specific mass ratios between the light and heavy beads, we show the existence of multi-hump solitary waves that propagate faster than the Nesterenko solitary wave in the corresponding homogeneous granular chain composed of only heavy beads. The existence of these waves has interesting implications in energy transmission in ordered granular chains.


2009 ◽  
Vol 642 ◽  
pp. 235-277 ◽  
Author(s):  
M. NITSCHE ◽  
P. D. WEIDMAN ◽  
R. GRIMSHAW ◽  
M. GHRIST ◽  
B. FORNBERG

Over two decades ago, some numerical studies and laboratory experiments identified the phenomenon of leapfrogging internal solitary waves located on separated pycnoclines. We revisit this problem to explore the behaviour of the near resonance phenomenon. We have developed a numerical code to follow the long-time inviscid evolution of isolated mode-two disturbances on two separated pycnoclines in a three-layer stratified fluid bounded by rigid horizontal top and bottom walls. We study the dependence of the solution on input system parameters, namely the three fluid densities and the two interface thicknesses, for fixed initial conditions describing isolated mode-two disturbances on each pycnocline. For most parameter values, the initial disturbances separate immediately and evolve into solitary waves, each with a distinct speed. However, in a narrow region of parameter space, the waves pair up and oscillate for some time in leapfrog fashion with a nearly equal average speed. The motion is only quasi-periodic, as each wave loses energy into its respective dispersive tail, which causes the spatial oscillation magnitude and period to increase until the waves eventually separate. We record the separation time, oscillation period and magnitude, and the final amplitudes and celerity of the separated waves as a function of the input parameters, and give evidence that no perfect periodic solutions occur. A simple asymptotic model is developed to aid in interpretation of the numerical results.


Author(s):  
Piergiulio Tempesta

We shall prove that the celebrated Rényi entropy is the first example of a new family of infinitely many multi-parametric entropies. We shall call them the Z-entropies . Each of them, under suitable hypotheses, generalizes the celebrated entropies of Boltzmann and Rényi. A crucial aspect is that every Z -entropy is composable (Tempesta 2016 Ann. Phys. 365 , 180–197. ( doi:10.1016/j.aop.2015.08.013 )). This property means that the entropy of a system which is composed of two or more independent systems depends, in all the associated probability space, on the choice of the two systems only. Further properties are also required to describe the composition process in terms of a group law. The composability axiom, introduced as a generalization of the fourth Shannon–Khinchin axiom (postulating additivity), is a highly non-trivial requirement. Indeed, in the trace-form class, the Boltzmann entropy and Tsallis entropy are the only known composable cases. However, in the non-trace form class, the Z -entropies arise as new entropic functions possessing the mathematical properties necessary for information-theoretical applications, in both classical and quantum contexts. From a mathematical point of view, composability is intimately related to formal group theory of algebraic topology. The underlying group-theoretical structure determines crucially the statistical properties of the corresponding entropies.


2019 ◽  
Vol 24 (4) ◽  
pp. 876-891 ◽  
Author(s):  
Raquel Barroso ◽  
Maria Barbosa-Ducharne

Adoption involves strong emotions. From the adoptee’s point of view, adoption means not only the gain of a new family but also inevitable losses. This study aims at analyzing adoption-related feelings, which include the feelings of loss and the ensuing curiosity about the birth family and pre-adoption life. A total of 81 adopted adolescents, aged 12–22, adopted at 4 years of age, on average, participated in this study. The data were collected using the Questionnaire of Adoption-related Feelings and the Adopted Adolescents Interview, which allowed for the identification of the experiences, feelings, and attitudes of the adopted adolescents regarding their story before and after adoption, and their feelings towards their birth family. The results showed that most participants did not identify adoption-related losses. Nevertheless, they acknowledged the existence of some aspects of their adoption story that made them feel sad and angry and could identify several difficulties associated with their adoptive status. Participants showed low levels of curiosity even if they were mostly curious about the reasons why they had been placed up for adoption. The adoptees’ feelings when thinking about their birth parents, the curiosity regarding their past, and their adoption-related losses predicted their feelings related to the adoption experience. Several implications for the psychological practice with adopted adolescents will be presented.


Author(s):  
A. Yeganeh-Bakhtiary ◽  
M. Zanganeh ◽  
E. Kazemi ◽  
L. Cheng ◽  
A. K. Abd Wahab

In this study, an Euler–Lagrange coupling two-phase flow model, namely movable bed simulator (MBS)-two-dimensional (2D) model was employed to explore the current-induced live-bed scour beneath marine pipelines. The fluid phase characteristics, such as velocity and pressure, were obtained by the Reynolds-averaged Navier–Stokes (RANS) equations with a k-ε turbulence closure model in a two-dimensional Eulerian grid, whereas the seabed beneath pipelines was traced as an assembly of discrete sand grains from the Lagrangian point of view. The live-bed scour was evolved as the motion of a granular media based on distinct element method (DEM) formulation, in which the frequent interparticle collision was described with a spring and dashpot system. The fluid flow was coupled to the sediment phase, considering the acting drag forces between. Comparison between the numerical result and experimental measurement confirms that the numerical model successfully estimates the bed profile and flow velocity field. It is evident that the fluid shear stress decreases with the increasing of gap ratio e/D. The numerical model provides a useful approach to improve mechanistic understanding of hydrodynamic and sediment transport in live-bed scour beneath a marine pipeline.


Author(s):  
JIAN ZHOU ◽  
CHIH-CHENG HUNG

Fuzzy clustering is an approach using the fuzzy set theory as a tool for data grouping, which has advantages over traditional clustering in many applications. Many fuzzy clustering algorithms have been developed in the literature including fuzzy c-means and possibilistic clustering algorithms, which are all objective-function based methods. Different from the existing fuzzy clustering approaches, in this paper, a general approach of fuzzy clustering is initiated from a new point of view, in which the memberships are estimated directly according to the data information using the fuzzy set theory, and the cluster centers are updated via a performance index. This new method is then used to develop a generalized approach of possibilistic clustering to obtain an infinite family of generalized possibilistic clustering algorithms. We also point out that the existing possibilistic clustering algorithms are members of this family. Following that, some specific possibilistic clustering algorithms in the new family are demonstrated by real data experiments, and the results show that these new proposed algorithms are efficient for clustering and easy for computer implementation.


2008 ◽  
Vol 77 (1) ◽  
Author(s):  
Mason A. Porter ◽  
Chiara Daraio ◽  
Eric B. Herbold ◽  
Ivan Szelengowicz ◽  
P. G. Kevrekidis

2011 ◽  
Vol 79 (1) ◽  
Author(s):  
Yuli Starosvetsky ◽  
K. R. Jayaprakash ◽  
Alexander F. Vakakis

We analyze the dynamics of strongly nonlinear granular chains of beads in Hertzian contact with light intruders. We show that the interactions of the light intruders with solitary pulses propagating through the granular medium can be approximately studied by reduced models of the intruders with only their neighboring beads under similar excitation conditions. Studying the reduced models, we identify weakly and strongly nonlinear regimes in the dynamics, depending on the degree of compression between beads and on the occurrence of separation between neighboring beads leading to collisions. We analyze weakly and strongly nonlinear oscillatory regimes of the intruder dynamics by multiple-scale analysis, and by applying special nonsmooth coordinate transformations. When separation between beads occurs, localized transient breathers are excited, corresponding to repeated collisions of an intruder with its neighbors. This leads to high-frequency scattering energy, and to radiation of energy in the granular medium in the form of low-amplitude slowly modulated oscillatory pulses. We find that repeated excitation of localized transient breathers by an array of periodically placed intruders can result in drastic reduction of the amplitude of a solitary wave propagating through the granular medium. This indicates that this type of granular media can be designed as effective shock attenuators.


2001 ◽  
Vol 13 (10) ◽  
pp. 1281-1305 ◽  
Author(s):  
BRIAN C. HALL

This paper discusses the canonical quantization of (1+1)-dimensional Yang–Mills theory on a spacetime cylinder from the point of view of coherent states, or equivalently, the Segal–Bargmann transform. Before gauge symmetry is imposed, the coherent states are simply ordinary coherent states labeled by points in an infinite-dimensional linear phase space. Gauge symmetry is imposed by projecting the original coherent states onto the gauge-invariant subspace, using a suitable regularization procedure. We obtain in this way a new family of "reduced" coherent states labeled by points in the reduced phase space, which in this case is simply the cotangent bundle of the structure group K. The main result explained here, obtained originally in a joint work of the author with B. Driver, is this: The reduced coherent states are precisely those associated to the generalized Segal–Bargmann transform for K, as introduced by the author from a different point of view. This result agrees with that of K. Wren, who uses a different method of implementing the gauge symmetry. The coherent states also provide a rigorous way of making sense out of the quantum Hamiltonian for the unreduced system. Various related issues are discussed, including the complex structure on the reduced phase space and the question of whether quantization commutes with reduction.


Sign in / Sign up

Export Citation Format

Share Document