Combining Separable Monte Carlo With Importance Sampling for Improved Accuracy

Author(s):  
Anirban Chaudhuri ◽  
Raphael T. Haftka

Monte-Carlo (MC) methods are often used to carry out reliability based design of structures. Methods that improve the accuracy of MC simulation include Separable Monte Carlo (SMC), Markov Chain Monte-Carlo, and importance sampling. We explore the utility of combining SMC and importance sampling for improving accuracy. The accuracy of the estimates is compared for crude MC, SMC, importance sampling and combined method for a composite plate example and a tuned mass damper example. For these examples SMC and importance sampling reduced the error individually by factors of 2 to 5, and the combination reduced it further by about a factor of 2. The results were also compared with the first order reliability method (FORM). FORM was grossly inaccurate for the tuned mass-damper example which has a failure region bounded by safe regions on either side.

2017 ◽  
Vol 17 (10) ◽  
pp. 1750121 ◽  
Author(s):  
Amin Gholizad ◽  
Seyyed Davood Ojaghzadeh Mohammadi

Displacement- and reliability-based designs of tuned mass damper (TMD) for a shear building are studied herein. Different sources of uncertainties such as earthquake records and their peak ground accelerations (PGA), masses of floors, cross-sectional dimensions of structural members, damping of the structure and modulus of elasticity are considered. Monte Carlo simulation (MCS) is used for evaluating the performance of the designed TMD. A method for generating artificial earthquake record by using wavelet packet transform (WPT) and particle swarm optimization (PSO) is proposed to generate artificial records for areas without sufficient strong ground motion records. An illustrative example is used to study the displacement- and reliability-based designs of TMD, which are related to minimizing the structural displacement and maximizing the performance of TMD, respectively. In addition, the performance of TMD on mitigating the response of structure and its reliability under uncertain parameters of loading and structural properties are investigated. The results show that a displacement-based designed TMD could reduce the lateral displacement of a structure. Furthermore, it illustrates that the reliability-based designed TMD has a better performance in real condition of loading and structural parameters.


2020 ◽  
Author(s):  
Shijie Yan ◽  
Qianqian Fang

AbstractOver the past decade, an increasing body of evidence has suggested that threedimensional (3-D) Monte Carlo (MC) light transport simulations are affected by the inherent limitations and errors of voxel-based domain boundaries. In this work, we specifically address this challenge using a hybrid MC algorithm, namely split-voxel MC or SVMC, that combines both mesh and voxel domain information to greatly improve MC simulation accuracy while remaining highly flexible and efficient in parallel hardware, such as graphics processing units (GPU). We achieve this by applying a marching-cubes algorithm to a pre-segmented domain to extract and encode sub-voxel information of curved surfaces, which is then used to inform ray-tracing computation within boundary voxels. This preservation of curved boundaries in a voxel data structure demonstrates significantly improved accuracy in several benchmarks, including a human brain atlas. The accuracy of the SVMC algorithm is comparable to that of mesh-based MC (MMC), but runs 2x-6x faster and requires only a lightweight preprocessing step. The proposed algorithm has been implemented in our open-source software and is freely available at http://mcx.space.


2010 ◽  
Vol 4 (4) ◽  
pp. 393 ◽  
Author(s):  
Benjamin P. Smarslok ◽  
Raphael T. Haftka ◽  
Laurent Carraro ◽  
David Ginsbourger

2020 ◽  
Vol 22 (4) ◽  
pp. 983-990
Author(s):  
Konrad Mnich

AbstractIn this work we analyze the behavior of a nonlinear dynamical system using a probabilistic approach. We focus on the coexistence of solutions and we check how the changes in the parameters of excitation influence the dynamics of the system. For the demonstration we use the Duffing oscillator with the tuned mass absorber. We mention the numerous attractors present in such a system and describe how they were found with the method based on the basin stability concept.


Author(s):  
Marcelio Ronnie Dantas de Sá ◽  
Armando Wilmans Nunes da Fonseca Júnior ◽  
Yuri Moraes ◽  
Antonio Almeida Silva

Tuned mass dampers (TMD) are one of the most reliable devices to control the vibration of the structure. The optimum mass ratio required for a single tuned mass damper (STMD) is evaluated corresponding to the fundamental natural frequency of the structure. The effect of STMD and Multiple tuned mass dampers (MTMD) on a G+20 storey structure are studied to demonstrate the damper’s effectiveness in seismic application. The location and number of tuned mass dampers are studied to give best structural performance in maximum reduction of seismic response for El Centro earthquake data. The analysis results from SAP 2000 software tool shows damper weighing 2.5% of the total weight of the structure effectively reduce the response of the structure. Study shows that introduction of 4-MTMD at top storey can effectively reduce the response by 10% more in comparison to single tuned mass damper. The use of MTMD of same mass ratio that of STMD is more effective in seismic response.


2021 ◽  
pp. 107754632110004
Author(s):  
Sanjukta Chakraborty ◽  
Aparna (Dey) Ghosh ◽  
Samit Ray-Chaudhuri

This article presents the design of a tuned mass damper with a conical spring to enable tuning to the natural frequency of the system at multiple values, as may be convenient in case of a system with fluctuations in the mass. The principle and design procedure of the conical spring in the context of a varying mass system are presented. A passive feedback control mechanism based on a simple pulley-mass system is devised to cater to the multi-tuning requirements. A design example of an elevated water tank with fluctuating water content, subjected to ground excitation, is considered to numerically illustrate the efficiency of such a tuned mass damper associated with the conical spring. The conical spring is designed based on the tuning requirements at different mass conditions of the elevated water tank by satisfying the allowable load bearing capacity of the spring. Comparisons are made with the conventional passive tuned mass damper with a linear spring tuned to the full tank condition. Results from time history analysis reveal that the conical spring-tuned mass damper can be successfully designed to remain tuned and thereby achieve significant response reductions under stiffening conditions of the primary structure, whereas the linear spring-tuned mass damper suffers performance degradation because of detuning, whenever there is any fluctuation in the system mass.


Sign in / Sign up

Export Citation Format

Share Document