Basic Optimization Methodology for the Design of Friction Damping in Blade Shrouds

Author(s):  
Michal Hajžman ◽  
Luděk Pešek ◽  
Jan Brůha ◽  
Vladimír Zeman ◽  
Drahomír Rychecký

This paper is focused on the optimization of friction element parameters in blade shrouds for various types of excitation. In order to create and validate a proper modelling methodology an experimental stand and a numerical simulation of blades interaction by means of a friction element placed in the shrouds were prepared. Mathematical models are based on the finite element method combined with rigid bodies. The interaction of the friction element and blades is described by normal contact and tangential friction forces derived for particular geometrical parameters of the studied mechanical system. The models can be analyzed both in frequency domain (by the harmonic balance method) or in time domain (by the numerical integration). The results of the optimization of friction element parameters with respect to the bending vibration suppression are documented in the paper. Another contact modelling approach intended for more complex contact surfaces is based on the decomposition of a contact surface into a set of elementary areas and on the expression of contact and friction forces between these areas. All methodologies are implemented in the MATLAB system and the results for the chosen test cases are compared with the results obtained by a measurement or by the ANSYS software.

Author(s):  
Stefano Zucca ◽  
Sergio Filippi ◽  
Fabio Droetti ◽  
Muzio M. Gola

Resonant vibrations affect fatigue life of vane segments. Friction damping is employed to reduce vibration amplitude. When vane segments are assembled, they are twisted so that lower platforms are in contact. The sum of displacements of the two ends of the lower platform after twisting is defined ‘interlocking’. Different ‘interlocking’ values correspond to different values of normal contact force. When interlocked vanes vibrate under external force excitation, energy is dissipated by friction forces at lower platform contacts providing damping to the system. The aim of this paper is the experimental validation of a numerical code for forced response calculation of interlocked vane segments. Since friction forces depend on relative displacements of bodies in contact, the system is nonlinear. System force response is computed by means of Harmonic Balance Method (HBM). Contact model implemented in the code is characterised by tangential and normal stiffness to take into account local compliance of the contact area. Gross slip occurs when the instantaneous ratio of tangential force to normal force is equal to the friction coefficient. Also effect of microslip is taken in account. The experimental set-up used to validate the code is made of a vane segment fixed at the outer radius to an aluminium frame and in contact with two supports at the inner radius. Comparison between the numerical predictions and experimental results is performed for different values of interlocking (i.e. force normal to the contact).


Author(s):  
Stefano Zucca ◽  
Juan Borrajo ◽  
Muzio M. Gola

In this paper a methodology for forced response calculation of bladed disks with underplatform dampers is described. The FE disk model, supposed to be cyclically symmetric, is reduced by means of Component Mode Synthesis and then DOFs lying at interfaces are further reduced by means of interface modes. Underplatform dampers are modeled as rigid bodies translating both in the radial and in the tangential direction of the engine. Contacts between blade platforms and damper are simulated by means of contact elements characterized by both tangential and normal contact stiffness, allowing partial separation of contact surfaces. Differential equilibrium equations are turned in non-linear algebraic equations by means of the Harmonic Balance Method (HBM). The methodology is implemented in a numerical code for forced response calculation of frictionally damped bladed disks. Numerical calculations are performed to evaluate the effectiveness of both the reduced order model and the underplatform model in simulating the dynamic behavior of bladed disks in presence of underplatform dampers.


Author(s):  
Michal Hajzˇman ◽  
Miroslav Byrtus ◽  
Vladimi´r Zeman

The problem of two blades with a friction element is studied in order to analyze the effects of the friction on the undesirable vibration suppression. The simplified contact model between friction planes of the blade shrouding and the friction element is derived to be a fast computational tool comparing with a time-consuming finite element solution. The harmonic balance method is suitable for the linearization of originally nonlinear equations of motion under certain assumptions given on the excitation of the system and on its dynamic response. On the other hand the nonlinear equations of motion can be solved directly by their numerical integration, which is more time-consuming but it is not limited by given assumptions. The comparison of results of the harmonic balance method and of the numerical integration of motion equations is given in the paper.


Author(s):  
Tamer M. Wasfy ◽  
Michael J. Leamy

A time-accurate explicit time-integration finite element code is used to simulate the dynamic response of synchronous belts-drives. The belt is modeled using beam or truss elements. The sprockets are modeled as cylindrical rigid bodies. Normal contact between the belt and a sprocket is modeled using the penalty technique and friction is modeled using an asperity-based approximate Coulomb friction model. The belt teeth/grooves are assumed to be located at the belt nodes (every fixed number of belt nodes). The nodes in-between teeth are subjected to the normal contact and tangential friction forces. The belt and sprocket teeth are assumed to be trapezoidal. The equivalent belt-sprocket tooth stiffness and damping coefficients in the normal tooth contact direction are used to calculate a normal tooth contact force at the belt teeth nodes. The tooth contact model also includes the effect of the tooth engagement tolerance. For validation purposes, a two-sprocket drive is modeled and a comparison is made between tooth loads predicted by the finite element model and experimental data available in the literature. Reasonable agreement between the simulation and experimental results is found of the drive’s tooth loads. Also, the dynamic response of a hybrid sprocket – flat pulley belt-drive is studied.


2001 ◽  
Vol 80 (3-4) ◽  
pp. 315-321 ◽  
Author(s):  
J.F. Cadorin ◽  
D. Jongmans ◽  
A. Plumier ◽  
T. Camelbeeck ◽  
S. Delaby ◽  
...  

AbstractTo provide quantitative information on the ground acceleration necessary to break speleothems, laboratory measurements on samples of stalagmite have been performed to study their failure in bending. Due to their high natural frequencies, speleothems can be considered as rigid bodies to seismic strong ground motion. Using this simple hypothesis and the determined mechanical properties (a minimum value of 0.4 MPa for the tensile failure stress has been considered), modelling indicates that horizontal acceleration ranging from 0.3 m/s2 to 100 m/s2 (0.03 to 10g) are necessary to break 35 broken speleothems of the Hotton cave for which the geometrical parameters have been determined. Thus, at the present time, a strong discrepancy exists between the peak accelerations observed during earthquakes and most of the calculated values necessary to break speleothems. One of the future research efforts will be to understand the reasons of the defined behaviour. It appears fundamental to perform measurements on in situ speleothems.


Author(s):  
Sarah Felix ◽  
Stanley Kon ◽  
Jianbin Nie ◽  
Roberto Horowitz

This paper describes the integration of thin film ZnO strain sensors onto hard disk drive suspensions for improved vibration suppression for tracking control. Sensor location was designed using an efficient optimization methodology based on linear quadratic gaussian (LQG) control. Sensors were fabricated directly onto steel wafers that were subsequently made into instrumented suspensions. Prototype instrumented suspensions were installed into commercial hard drives and tested. For the first time, a sensing signal was successfully obtained while the suspension was flying on a disk as in normal drive operation. Preliminary models were identified from experimental transfer functions. Nominal H2 control simulations demonstrated improved vibration suppression as a result of both the better resolution and higher sensing rate provided by the sensors.


Author(s):  
L. Gaul ◽  
R. Nitsche

Abstract Friction damping in bolted joint connections of large space structures turned out to be a major source of damping (Gaul and Bohlen, 1987). For vibration suppression, the joints are designed such that the normal force in a frictional interface is controlled which improves damping performance. The use of active control to vary the normal contact force in a joint by means of a piezoelectric element is explored. A model consisting of two elastic beams connected by a single active joint is considered. A friction model with velocity dependent dynamics is used to describe the friction phenomena. A control law for friction dampers which maximizes energy dissipation instantaneously by controlling the normal force at the friction interface is proposed. The effect of displacement- and velocity-induced friction dynamics is considered for the design of the control law. We arrive at a dynamic controller which prevents frictional energy stored as potential energy in a bristle model from being returned to the system.


2020 ◽  
pp. 107754632094378
Author(s):  
Haiping Liu ◽  
Kaili Xiao ◽  
PengPeng Zhao ◽  
Dongmei Zhu

Stiffness and damping of a structure usually show the opposite change so that the resonant frequency and the static load bearing capacity of a mechanical system often exhibit contradiction. To solve this dilemma, a novel high-damping oscillator which is constructed by a nested diamond structure with the purpose of enhancing the damping property is proposed in this study without reducing the overall systematic stiffness. The mathematical model and geometrical relationships are established at first. And then, the steady-state solutions under base excitation are derived by using the harmonic balance method and further verified by numerical simulation. In addition, the effects of some design parameters on the equivalent damping ratio for the high-damping oscillator are studied to reveal the nonlinear characteristic. Besides, the natural frequency of the nonlinear oscillator is also presented and investigated. By using the displacement transmissibility and comparing with the traditional linear isolator with the same overall stiffness, the vibration suppression performance of the high-damping oscillator is addressed. The obtained calculating results demonstrate that the vibration control performance of the high-damping oscillator outperforms the linear counterpart around resonant frequency. Moreover, the influences of systematic parameters of the high-damping oscillator for the base excitation case on the vibration transmissibility are also discussed, respectively. Finally, an experimental campaign is conducted on an in-house-built test rig to corroborate the accuracy of the analytical solutions of the high-damping oscillation system. The results discussed in this study provide a useful guideline, which can help to design this class of high-damping oscillation system.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
J. Didier ◽  
J.-J. Sinou ◽  
B. Faverjon

This paper describes the coupling of a Multi-Dimensional Harmonic Balance Method (MHBM) with a Polynomial Chaos Expansion (PCE) to determine the dynamic response of quasi-periodic dynamic systems subjected to multiple excitations and uncertainties. The proposed method will be applied to a rotor system excited at its support. Uncertainties considered include both material and geometrical parameters as well as excitation sources. To demonstrate the effectiveness and validity of the proposed numerical approach, the results that include mean, variation of the response, envelopes of the Frequency Response Functions and orbits will be systematically compared to a classical Monte Carlo approach.


Author(s):  
Shahriar G. Ahmadi ◽  
Tamer M. Wasfy ◽  
Hatem M. Wasfy ◽  
Jeanne M. Peters

A high-fidelity multibody dynamics model for simulating a backhoe digging operation is presented. The backhoe components including: frame, manipulator, track, wheels and sprockets are modeled as rigid bodies. The soil is modeled using cubic shaped particles for simulating sand with appropriate inter-particle normal and frictional forces. A penalty technique is used to impose both joint and normal contact constraints (including track-wheels, track-terrain, bucket-particles and particles-particles contact). An asperity-based friction model is used to model joint and contact friction. A Cartesian Eulerian grid contact search algorithm is used to allow fast contact detection between particles. A recursive bounding box contact search algorithm is used to allow fast contact detection between polygonal contact surfaces. The governing equations of motion are solved along with joint/constraint equations using a time-accurate explicit solution procedure. The model can help improve the performance of construction equipment by predicting the actuator and joint forces and the vehicle stability during digging for various vehicle design alternatives.


Sign in / Sign up

Export Citation Format

Share Document