An Integrated Model Approach for Quantifying Carbon Emissions From Residue-Based Biofuel Production

Author(s):  
Jared M. Abodeely ◽  
David J. Muth ◽  
Joshua Koch ◽  
Kenneth M. Bryden

This paper presents an agricultural residue removal decision framework that couples the environmental process models WEPS, RUSLE2, SCI, and DAYCENT. One of the goals of this integrated model is to quantify the impacts of land management strategies on soil organic carbon and CO2 emissions. Soil, climate, and land management practices are considered in determining sustainable residue removal rates using wind- and water-induced soil erosion and qualitative soil organic carbon constraints and to quantify the long-term impacts of sustainable residue removal on soil organic carbon and greenhouse gas emissions. Using this integrated model sustainable residue removal for four crop rotations, three tillage regimes, and four soil types representing nearly 70% of the arable acres in Boone County, Iowa are examined. Each scenario was performed for a twenty-year period. Soil organic carbon and CO2 emission results are aggregated by soil type using crop rotation and tillage statistics. The soil type results are aggregated using a normalized percentage area to provide a county level estimate of soil organic carbon changes and CO2 emissions. Results show that for the largest sustainable residue removal rate that soil organic carbon increased 3.53–6.63 Mg/ha over the 20 year simulation and that CO2 emissions ranged from 3.50–4.23 Mg/ha across the four soil types resulting in an average increase of soil organic carbon of 4.85 Mg/ha and CO2 emission of 3.77 Mg/ha at the county level.

2018 ◽  
pp. 71-88 ◽  
Author(s):  
Leo Jude Villasica ◽  
Suzette Lina ◽  
Victor Asio

Aggregate stability and carbon (C) sequestration in soils are closely related phenomena. However, high aggregate stability does not always ensure high carbon sequestration to some soil types since other binding agents could dominate other than carbon. Thus, this study aimed to determine the relationship between aggregate stability and carbon sequestration of different tropical soils which basically differ in geology, genesis, and possibly in their dominant aggregating agents. The study selected four representative soil types (Haplic Acrisol, Calcaric Cambisol, Silic Andosol and Haplic Ferralsol) found in Leyte and Samar that were characterized by previous workers. Soil Organic Carbon (SOC) and Aggregate Stability (AS) in dry and wet conditions were quantified using standard procedures. Some pertinent secondary data were also recorded as reference for each soil type. Results revealed that only Silic Andosol showed positive significant correlation (0.93) between aggregate stability and soil organic carbon (SOC). The other soil types showed weak and negative correlation between aggregate stability and SOC; however, their stability revealed a strong positive relationship with inorganic binding agents. Therefore, each soil type reflects a different relationship between aggregate stability in wet condition and SOC and that the variations could be attributed to the differences in the morpho-physical and geochemical nature of the soils. Moreover, SOC is found to greatly influence the aggregate stability in Silic Andosol, thus the soil carbon sequestration potential of this soil type is generally related to its aggregate stability. However, in other soil types like Haplic Acrisol, Calcaric Cambisol, and Haplic Ferralsol, other binding agents like Calcium (Ca) and iron oxides dominate and control the formation and stability of aggregates rather than SOC.


2018 ◽  
Vol 10 (11) ◽  
pp. 1747 ◽  
Author(s):  
Yi Liu ◽  
Zhou Shi ◽  
Ganlin Zhang ◽  
Yiyun Chen ◽  
Shuo Li ◽  
...  

Ancillary data, such as soil type, may improve the visible and near-infrared (vis-NIR) estimation of soil organic carbon (SOC); however, they require data collection or expert knowledge. The application of a national soil spectral library to local SOC estimations usually requires soil type information, because the relationships between vis-NIR spectra and SOC from different populations may vary. Using 515 samples of five soil types (genetic soil classification of China, GSCC) from the Chinese soil spectral library (CSSL), we compared three strategies in the vis-NIR estimation of SOC. Different regression models were calibrated using the entire dataset (Strategy I, without using soil type as ancillary data) and the subsets stratified by soil type from CSSL as ancillary data (strategies II and III). In Strategy II, the subsets were stratified by soil type from the CSSL for validation. In Strategy III, the subsets were stratified by spectrally derived soil type for validation. The results showed that 86.72% of the samples were successfully discriminated for the soil types by using the vis-NIR spectra. The coefficients of determination in the prediction ( R p 2 ) of SOC estimation by strategies I, II, and III were 0.74, 0.83, and 0.82, respectively. The stratified calibration strategies (strategies II and III) improved the vis-NIR estimation of SOC. The misclassification of the soil type in the application of Strategy III slightly affected the SOC estimations. Nevertheless, this strategy is inexpensive and beneficial when expert knowledge on soil classification is lacking. We concluded that vis-NIR spectroscopy could be applied to distinguish some soil types in terms of GSCC, which further provided essential and easily accessible ancillary data for the application of stratified calibration strategies in the vis-NIR estimation of SOC.


Author(s):  
Magdalena Banach-Szott ◽  
Bozena Debska ◽  
Erika Tobiasova

AbstractMany studies report organic carbon stabilization by clay minerals, but the effects of land use and soil type on the properties of humic acids (HAs) are missing. The aim of the paper is to determine the effects of land use and soil types on the characteristics of HAs, which have a considerable influence on organic matter quality. It was hypothesised that the effect of the land use on HAs properties depends on the particular size distribution. The research was performed in three ecosystems: agricultural, forest, and meadow, located in Slovakia. From each of them, the samples of 4 soil types were taken: Chernozem, Luvisol, Planosol, and Cambisol. The soil samples were assayed for the content of total organic carbon (TOC) and the particle size distribution. HAs were extracted with the Schnitzer method and analysed for the elemental composition, spectrometric parameters in the UV-VIS range, and hydrophilic and hydrophobic properties, and the infrared spectra were produced. The research results have shown that the properties of HAs can be modified by the land use and the scope and that the direction of changes depends on the soil type. The HAs of Chernozem and Luvisol in the agri-ecosystem were identified with a higher “degree of maturity”, as reflected by atomic ratios (H/C, O/C, O/H), absorbance coefficients, and the FT-IR spectra, as compared with the HAs of the meadow and forest ecosystem. However, as for the HAs of Cambisol, a higher “degree of maturity” was demonstrated for the meadow ecosystem, as compared with the HAs of the agri- and forest ecosystem. The present research has clearly identified that the content of clay is the factor determining the HAs properties. Soils with a higher content of the clay fraction contain HAs with a higher “degree of maturity”.


2021 ◽  
Vol 19 (1) ◽  
pp. e1102
Author(s):  
Maroua Dachraoui ◽  
Aurora Sombrero

Aim of study: To evaluate the effects of conventional tillage (CT) and no tillage (NT) systems on the soil organic carbon (SOC) changes, CO2 emissions and their relation with soil temperature and grain yield in a monoculture of irrigated maize during six years.Area of study: In Zamadueñas experimental field in the Spanish province of Valladolid, from 2011 to 2017.Material and methods: The SOC content was determined by collecting soil samples up to 30 cm in November at two years interval. Short-term CO2 emissions were measured simultaneously with soil temperature using a respiration chamber and a hand-held probe immediately before, after every tillage operation and during the maize cycle.Main results: The SOC stock of the top 30 cm soil layers was 13% greater under NT than CT. Short-term CO2 emissions were significantly higher under CT ranging from 0.8 to 3.4 g CO2 m-2 h-1 immediately after tillage while under NT system, soil CO2 fluxes were low and stable during this study period. During the first 48 h following tillage, cumulative CO2 emissions ranged from 0.6 to 2.4 Mg CO2 ha-1 and from 0.2 to 0.3 Mg CO2 ha-1 under CT and NT systems, respectively. Soil temperature did not show significant correlation with CO2 emissions; however, it depended mostly on the time of measurement.Research highlights: No tillage increased the SOC accumulation in the topsoil layer, reduced CO2 emissions without decreasing maize grain yield and minimized the impact on climate change compared to CT system.


2019 ◽  
Vol 35 (3) ◽  
pp. 433-442 ◽  
Author(s):  
Stoécio Malta Ferreira Maia ◽  
Giordano Bruno Medeiros Gonzaga ◽  
Leilane Kristine dos Santos Silva ◽  
Guilherme Bastos Lyra ◽  
Tâmara Cláudia de Araújo Gomes

2012 ◽  
Vol 18 (7) ◽  
pp. 2233-2245 ◽  
Author(s):  
Martin Wiesmeier ◽  
Peter Spörlein ◽  
Uwe Geuß ◽  
Edzard Hangen ◽  
Stephan Haug ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document