Constraint-Based Design and Analysis of a Compliant Parallel Mechanism Using SMA-Spring Actuators

Author(s):  
C. Qiu ◽  
K. Zhang ◽  
Jian S. Dai

This paper presents a novel compliant parallel mechanism that utilizes shape-memory-alloy (SMA) spring based actuators. By employing SMA coil springs, the traditional line constraint that resists translation along its axis but no other forms of motions is transformed into a linear actuator that can generate deflection along its axis, which leads to the design of SMA-spring linear actuators. In accordance with this SMA actuator, an constraint-based approach in the framework of screw theory is utilized to synthesize the constraint and actuation space of parallel mechanisms, and a novel 4 DOF parallel platform is developed based on this analytical approach. A physical prototype is manufactured by employing the SMA-spring actuators, and its mobility and workspace are verified with both finite element simulation and experiment observations. The results illustrate this parallel mechanism has a large workspace in all desired mobility configurations. The presented work on the parallel platform demonstrates the efficiency of the constraint-based approach in determining the layout of actuation systems, also the developed SMA actuators pave a new way for applying the SMA technique in the future development of compliant parallel mechanisms and robotics.

Author(s):  
Ting-Li Yang ◽  
An-Xin Liu ◽  
Qiong Jin ◽  
Yu-Feng Luo ◽  
Lu-Bin Hang ◽  
...  

Based on previous research results presented by authors, this paper proposes a novel systematic approach for structure synthesis of all parallel mechanisms (excluding Bennett mechanism etc), which is totally different from the approaches based on screw theory and based on displacement subgroup. Main characteristics of this approach are: (a) the synthesized mechanisms are non-instantaneous ones, and (b) only simple mathematical tools (vector algebra, theory of sets, etc.) are used. Main steps of this approach include: (1) Determining functional and structural requirements of the parallel mechanism to be synthesized, such as position and orientation characteristic (POC) matrix, degree of freedom (DOF), etc. (2) Type synthesis of branches. (3) Assembling of branches (determining the geometry constraint conditions among the branches attached between the moving platform and the frame, and checking the DOF). (4) Identifying the inactive joints. (5) Selecting the actuating joints. In order to illustrate the whole procedure, the type synthesis of spherical parallel mechanisms is studied using this approach.


Author(s):  
Ting-Li Yang ◽  
An-Xin Liu ◽  
Qiong Jin ◽  
Yu-Feng Luo ◽  
Hui-Ping Shen ◽  
...  

This paper presents the explicit mapping relations between topological structure of parallel mechanism and position and orientation characteristic (in short, POC) of its motion output link. It deals with: (1) The symbolic representation and the invariant of topological structure of mechanism; (2) The matrix representation of POC of motion output link; (3) The POC equations of parallel mechanism and its symbolic operation rules. The symbolic operation involves simple mathematic tools and fewer operation rules, and has clear geometrical meaning. So, it is easy to use. The forward operation of the POC equations can be used for structural analysis; its inverse operation can be used for structural synthesis. The method proposed in this paper is totally different from the methods based on screw theory and based on displacement subgroup.


Author(s):  
Wei Ye ◽  
Yuefa Fang ◽  
Sheng Guo ◽  
Haibo Qu

In this paper, the motion equivalent chain method is proposed and then applied to the type synthesis of a class of 2R2T parallel mechanism. The equivalent serial chains are synthesized for a specific 2R2T motion pattern based on screw theory. Feasible limb structures that provide a constraint couple and a constraint force are enumerated according to the reciprocity of the twist and wrench systems. Several motion equivalent single loop chains are constructed with the equivalent serial chains. Using motion equivalent single loop chains to replace the equivalent serial chains, a class of 2R2T parallel mechanisms is obtained based on the foundation of motion equivalent single loop chain structures.


2009 ◽  
Vol 1 (2) ◽  
Author(s):  
Cyril Quennouelle ◽  
Clément Gosselin

In this paper, the mobility, the kinematic constraints, the pose of the end-effector, and the static constraints that lead to the kinematostatic model of a compliant parallel mechanism are introduced. A formulation is then provided for its instantaneous variation—the quasi-static model. This new model allows the calculation of the variation in the pose as a linear function of the motion of the actuators and the variation in the external loads through two new matrices: the compliant Jacobian matrix and the Cartesian compliance matrix that give a simple and meaningful formulation of the model of the mechanism. Finally, a simple application to a planar four-bar mechanism is presented to illustrate the use of this model and the new possibilities that it opens, notably the study of the kinematics for any range of applied load.


2011 ◽  
Vol 201-203 ◽  
pp. 1907-1912
Author(s):  
Rong Jiang Cui ◽  
Zong He Guo ◽  
Zi Xun Yin ◽  
Song Song Zhu

First, the branched-chain of parallel mechanism was Classified according to reciprocal screw theory. Then, the introduction of variable topology mechanism theory, with the characteristics of parallel mechanisms themselves, the definition and basic variable topology means of variable topology parallel mechanism were given. With evolutionary theory, the method to design lower-mobility parallel mechanisms of non-asymmetric was proposed based on variable topology mechanism theory .Taking 3-RPS as ideal mechanism and topology synthesis was carried out, besides 2-RPS mechanism were analyzed. The introduction of variable topology mechanism theory provided a theoretical basis and innovative approaches for the synthesis configuration of Lower-mobility parallel mechanisms of non-asymmetric.


2021 ◽  
Author(s):  
Yongquan Li ◽  
Hong-Sheng Jiang ◽  
Tian-Yu Zheng ◽  
Ke-Long Xi ◽  
Han Jing ◽  
...  

Abstract The 3-translational parallel mechanism is widely used in industrial, medical, and military fields, among others. With the development of the national logistics industry, a pressing need for a kind of 3-translational parallel mechanism emerged. Such mechanisms have high stiffness and high bearing capacity and are used for cargo handling and sorting. A novel method based on the graphical approach was proposed for the synthesis of 3-translational redundancy actuated parallel mechanism with closed-loop branch chains. The new mechanism has four symmetrically arranged branch chains, which eases subsequent kinematics and dynamics analyses while providing good mechanical properties. Based on the graphical approach theory, according to the constraint number contained in the branch chain, two types of redundant driven branch chains with closed-loop structures were constructed. The first type includes rotation constraint in one direction, while the second type includes the rotation constraint in two directions. Based on various combinations of two branch chain types, their allocation schemes can be divided into two types. Moreover, said these two allocation schemes can be integrated into at least 500 and 400 types of 3-translational redundant actuated parallel mechanisms with closed-loop branch chains. Then, the degree of freedom properties of representative mechanisms were tested using the screw theory. A large number of novel mechanisms were integrated assessed using this method, and branch chains such mechanisms were symmetrically distributed. They have a strong bearing capacity, simple calculation, and control, and can be applied to the handling and sorting of goods, large-scale precision machine tools, and large construction machinery vibration isolation systems, among others.


2021 ◽  
Vol 12 (2) ◽  
pp. 983-995
Author(s):  
Shihua Li ◽  
Yajie Zhou ◽  
Yanxia Shan ◽  
Shuang Chen ◽  
Jinhan Han

Abstract. In the fields of electronic packaging, micromanipulation, scanning, and two translational (2T) mechanisms are required, especially with high stiffness, for a large workspace, with good driving stability, and other occasions. Redundant actuators are required to improve the performance of the 2T compliant parallel mechanism. The novelty of the work is to propose a new method for the type synthesis of a 2T redundant actuated compliant parallel mechanism based on the freedom and constraint topology (FACT) approach and the atlas approach. The synthesis conditions are given, and the synthesis process is formulated. With this method, new 2T redundant actuated compliant parallel mechanisms are synthesized. Some new mechanisms have been synthesized, which enriches the compliant parallel mechanism configurations. Based on the atlas method, the synthesized mechanism is analyzed. The results verify the correctness and effective of the synthesis method. The method is also suitable for a type of synthesis of redundant actuated compliant parallel mechanisms with 3, 4, 5, and 6 degrees of freedom (DOF), respectively.


Author(s):  
Haiyang Li ◽  
Guangbo Hao

This paper introduces a compliant mechanism reconfiguration approach that can be used to minimize the parasitic motions of a compliant mechanism. This reconfiguration approach is based on the position spaces, identified by the screw theory, of independent compliant modules in a compliant mechanism system. The parasitic motions (rotations) of a compliant mechanism are first modelled associated with the variables representing any positions of the compliant modules in the position spaces. The optimal positions of the compliant modules are then obtained where the parasitic motions are reduced to minimal values. A procedure of the compliant mechanism reconfiguration approach is summarized and demonstrated using a decoupled XYZ compliant parallel mechanism as an example. The analytical results show that the parasitic motions of the XYZ compliant parallel mechanism in the example can be dramatically reduced by the position/structure reconfiguration, which is also validated by finite element analysis. The position space of a compliant module contains a number of possible positions, thus a compliant mechanism can also be efficiently reconfigured to a variety of practical patterns such as the configuration with compact structure.


Robotica ◽  
2011 ◽  
Vol 30 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Sheng Guo ◽  
Yuefa Fang ◽  
Haibo Qu

SUMMARYA systematic method is developed for the type synthesis of 4-DOF nonoverconstrained parallel mechanisms with three translations and one rotation inspired by the design of H-4. First, the motion requirements of primary platform and secondary platform of the 4-DOF nonoverconstrained parallel mechanisms are analyzed, and the conflict between the number of actuators and the constraint system for nonoverconstrained parallel mechanism is solved. Then, the research topic of type synthesis of 4-DOF nonoverconstrained parallel mechanisms is transformed into the type synthesis of the secondary platform with three translational DOF linked by two chains. On the basis of the screw and reciprocal theory, all possible secondary limbs with 3-DOF, 4-DOF, and 5-DOF are synthesized, respectively. Finally, the configurations and spatial assembly conditions of all possible secondary limbs are provided and some typical mechanisms are sketched as examples.


2004 ◽  
Vol 126 (1) ◽  
pp. 79-82 ◽  
Author(s):  
Q. C. Li ◽  
Z. Huang

Mobility analysis of a novel 3-5R parallel mechanism family whose limb consists of a 2R and a 3R parallel subchain is performed by the aid of screw theory. A mobility criterion applicable to such 3-leg parallel mechanisms in which each kinematic chain contains five kinematic pairs is proposed. It is shown that under different structural conditions, the 3-5R parallel mechanism can have 3, 4, or 5 DOF (degrees of freedom). The structural conditions that guarantee the full-cycle mobility are analyzed. The analysis and the method presented in this paper will be helpful in using such a 3-5R parallel mechanism family and introduce new insights into the mobility analysis of parallel mechanisms.


Sign in / Sign up

Export Citation Format

Share Document