Primary Resonance of MEMS/NEMS Circular Plate Biosensors

Author(s):  
Dumitru I. Caruntu ◽  
Reynaldo Oyervides

This investigation deals with M/NEMS circular plates under electrostatic actuation. Such structures can be used as resonator sensors for medicine and biology applications such as virus, bacteria or DNA detection. The system consists of a clamped circular plate over a ground. The actuation of the plate is done through an AC voltage whose frequency is near half natural frequency of the plate. This produces a primary resonance to be used afterwards for sensing purposes. It is showed that a saddle-node bifurcation occurs. The effects of damping, voltage, Casimir, and van der Waals forces are predicted.

Author(s):  
Dumitru I. Caruntu ◽  
Iris Alvarado

This paper deals with electrostatically actuated micro and nano-electromechanical (MEMS/NEMS) circular plates. The system under investigation consists of two bodies, a deformable and conductive circular plate placed above a fixed, rigid and conductive ground plate. The deformable circular plate is electrostatically actuated by applying an AC voltage between the two plates. Nonlinear parametric resonance and pull-in occur at certain frequencies and relatively large AC voltage, respectively. Such phenomena are useful for applications such as sensors, actuators, switches, micro-pumps, micro-tweezers, chemical and mass sensing, and micro-mirrors. A mathematical model of clamped circular MEMS/NEMS electrostatically actuated plates has been developed. Since the model is in the micro- and nano-scale, surface forces, van der Waals and/or Casimir, acting on the plate are included. A perturbation method, the Method of Multiple Scales (MMS), is used for investigating the case of weakly nonlinear MEMS/NEMS circular plates. Two time scales, fast and slow, are considered in this work. The amplitude-frequency and phase-frequency response of the plate in the case of primary resonance are obtained and discussed.


Author(s):  
Dumitru I. Caruntu ◽  
Ezequiel Juarez

This paper deals with electrostatically actuated Double Walled Carbon Nanotubes (DWCNT) cantilever resonators. DWCNTs are modeled as Euler-Bernoulli cantilever beams. Electrostatic, damping, and van der Waals, forces act on the outer tube of the DWCNT, while only van der Waals force acts on the inner tube. A soft AC voltage provides the electrostatic actuation. Van der Waals forces are present between the carbon nanotubes, coupling the deflections of the tubes. The nonlinearities in the system are given by the electrostatic and van der Waals forces. The DWCNT undergoes nonlinear parametric dynamics. The Method of Multiple Scales (MMS) is employed to investigate the system under soft excitations and/or weak nonlinearities. A modal coordinate transformation, in which only the linear term of the van der Waals force are considered, and the Harmonic Balance Method (HBM), are used to solve the zero-order problem. Then the frequency-amplitude response is found in the case of primary resonance. The expected nonlinear dynamic behavior is important to improve DWCNT resonator sensitivity in the application of mass sensing.


2020 ◽  
Vol 60 (2) ◽  
pp. 127-144
Author(s):  
Saheed Salawu ◽  
Gbeminiyi Sobamowo ◽  
Obanishola Sadiq

The study of the dynamic behaviour of non-uniform thickness circular plate resting on elastic foundations is very imperative in designing structural systems. This present research investigates the free vibration analysis of varying density and non-uniform thickness isotropic circular plates resting on Winkler and Pasternak foundations. The governing differential equation is analysed using the Galerkin method of weighted residuals. Linear and nonlinear case is considered, the surface radial and circumferential stresses are also determined. Thereafter, the accuracy and consistency of the analytical solutions obtained are ascertained by comparing the existing results available in pieces of literature and confirmed to be in a good harmony. Also, it is observed that very accurate results can be obtained with few computations. Issues relating to the singularity of circular plate governing equations are handled with ease. The analytical solutions obtained are used to determine the influence of elastic foundations, homogeneity and thickness variation on the dynamic behaviour of the circular plate, the effect of vibration on a free surface of the foundation as well as the influence of radial and circumferential stress on mode shapes of the circular plate considered. From the results, it is observed that a maximum of 8.1% percentage difference is obtained with the solutions obtained from other analytical methods. Furthermore, increasing the elastic foundation parameter increases the natural frequency. Extrema modal displacement occurs due to radial and circumferential stress. Natural frequency increases as the thickness of the circular plate increases, Conversely, a decrease in natural frequency is observed as the density varies. It is envisioned that; the present study will contribute to the existing knowledge of the classical theory of vibration.


Author(s):  
Dumitru I. Caruntu ◽  
Ezequiel Juarez

Abstract This paper deals with the frequency-amplitude response of primary resonance of electrostatically actuated Double-Walled Carbon Nanotubes (DWCNT) and Single-Walled Carbon Nanotubes (SWCNT) cantilever resonators. Their responses are compared. Both the DWCNT and SWCNT are modeled as Euler-Bernoulli cantilever beams. Electrostatic and damping forces are applied on both types of resonators. An AC voltage provides a soft electrostatic actuation. For the DWCNT, intertube van der Waals forces are present between the carbon nanotubes, coupling the deflections of the tubes and acting as a nonlinear spring between the two carbon nanotubes. Electrostatic (for SWCNT and DWCNT) and intertube van der Waals (for DWCNT) forces are nonlinear. Both resonators undergo nonlinear parametric excitation. The Method of Multiple Scales (MMS) is used to investigate the systems under soft excitations and weak nonlinearities. A 2-Term Reduced-Order-Model (ROM) is numerically solved for stability analysis using AUTO-07P, a continuation and bifurcation software. The coaxial vibrations of DWCNT are considered in this work, in order to draw comparisons between DWCNT and SWCNT. Effects of damping and voltage of the frequency-amplitude response are reported.


Author(s):  
Dumitru I. Caruntu ◽  
Ezequiel Juarez

This paper investigates electrostatically actuated Double Walled Carbon Nanotubes (DWCNT) cantilever biosensors using the Method of Multiple Scales (MMS) and the Harmonic Balance Method (HBM). Forces acting on the outer tube of the DWCNT are electrostatic, damping, and van der Waals, while only van der Waals acts on the inner tube. The electrostatic actuation is provided by a soft AC voltage. Van der Waals forces are present between the carbon nanotubes, coupling the deflections of the tubes; herein, for modal coordinate transformation, only the linear term of the van der Waals force will be considered. The nonlinearity of the motion is produced by the electrostatic and van der Waals forces. The DWCNT undergoes nonlinear parametric dynamics. MMS is employed to investigate the system under soft excitations and/or weak nonlinearities. The frequency-amplitude response is found in the case of primary resonance. DWCNTs are modelled after the Euler-Bernoulli cantilever beam. The expected nonlinear dynamic behavior is important to improve DWCNT resonator sensitivity in the application of mass sensing.


Author(s):  
Dumitru I. Caruntu ◽  
Reynaldo Oyervides ◽  
Valeria Garcia

This paper deals with electrostatically actuated MEMS plates. The model consists of a flexible MEMS plate above a parallel ground plate. An AC voltage of frequency near natural frequency of the plate provides the electrostatic force that actuates the flexible MEMS plate. This leads to parametric resonance. The effect of Casimir and/or van der Waals forces on the voltage-amplitude response of the plate is investigated.


Author(s):  
Dumitru I. Caruntu ◽  
Reynaldo Oyervides

This paper investigates parametric resonance of electrostatically actuated MEMS circular plates for resonator sensing applications. The system consists of a clamped circular elastic plate over a ground plate. Soft AC voltage of frequency near natural frequency of the plate gives the electrostatic force that leads the elastic plate into vibration, more specifically into parametric resonance which can be used afterwards for biosensing purposes. Frequency response and corresponding bifurcations are reported. The effects of damping and voltage are predicted.


Author(s):  
Dumitru I. Caruntu ◽  
Reynaldo Oyervides

This paper utilizes Reduced Order Model (ROM) method to investigate the voltage-amplitude response of electrostatically actuated M/NEMS clamped circular plates. Soft AC voltage at frequency near half natural frequency of the plate is used. This results in primary resonance of the system. The effects of nonlinearities of the system including pull-in instability on the voltage-amplitude response are investigated. Namely, the effects of detuning frequency, damping, Casimir force, and van der Waals force on the voltage response of clamped circular plates are reported. Casimir and van der Waals forces are found to have significant effects on the response of clamped circular plates and must be considered to accurately model and predict the behavior of the system.


2016 ◽  
Vol 32 (6) ◽  
pp. 683-692 ◽  
Author(s):  
D.-L. Chen

AbstractIn this paper, the effect of delamination on free vibration and primary resonance behaviors of composite circular plate with circular delamination is investigated. Through Reissner Variational Principle, the nonlinear dynamic equilibrium equations, the generalized displacements continuity conditions and the generalized forces equilibrium conditions across delamination front and consistent boundary conditions of delaminated circular plate are obtained. In the work, by introducing Bessel Function and Modified Bessel Function and using Galerkin discretization method, the nonlinear dynamic partial differential equations of delaminated circular plate are transferred into a set of nonlinear ordinary differential equations. Then by using semi-analytic method and multiple scales method, the effects of delamination radius and delamination depth in the thickness-wise on the natural frequency and primary resonance behaviors of delaminated circular plate are presented. The Results show that delamination has considerable effects on the natural frequency and its primary resonance behaviors of delaminated plate.


Author(s):  
Dumitru I. Caruntu ◽  
Ezequiel Juarez

This paper deals with electrostatically actuated Double Walled Carbon Nanotubes (DWCNT) cantilevered resonators. The governing equations for the motion of the DWCNT are derived through Euler-Bernoulli beam model assumptions that account for inertial and viscoelastic effects. The DWCNT is a specific type of multi-walled carbon nanotube (MWCNT) that is comprised of two coaxially concentric carbon nanotubes. Electrostatic, damping, and intertube van der Waals forces act on the outer tube of the DWCNT, while only intertube van der Waals force acts on the inner tube. A soft AC voltage provides the electrostatic actuation. The nonlinear behavior and phenomena in the system are provided by the electrostatic and intertube van der Waals forces. The DWCNT is subjected to nonlinear parametric dynamics. The Method of Multiple Scales (MMS) is employed to investigate the system under soft excitations and/or weak nonlinearities. The frequency-amplitude response is found in the case of parametric resonance. The resulting nonlinear dynamic behavior is important to improve DWCNT resonator sensitivity in the application of mass sensing.


Sign in / Sign up

Export Citation Format

Share Document