Active Compliant Parallel Mechanisms

Author(s):  
Matthew Holgate ◽  
Thomas G. Sugar

In a novel compliant parallel mechanism, a motor and spring are arranged in a parallel fashion and are connected to a movable lever arm. The motor pushes and pulls on one attachment point and the spring stores and releases energy at a second attachment point. In a non-obvious choice, we do not attach the output link to the commonly thought of end-effector, but to the third link in the planar, parallel mechanism. The new mechanism allows the transmission ratio of the motor to be a function of the output angle and the force applied at the spring. For example, if there are no loads on the spring, the overall gear ratio is lowered, and the output speed can be increased. Conversely, if there are loads on the spring, the overall gear ratio is increased, and the output torque can be increased.

2009 ◽  
Vol 1 (2) ◽  
Author(s):  
Cyril Quennouelle ◽  
Clément Gosselin

In this paper, the mobility, the kinematic constraints, the pose of the end-effector, and the static constraints that lead to the kinematostatic model of a compliant parallel mechanism are introduced. A formulation is then provided for its instantaneous variation—the quasi-static model. This new model allows the calculation of the variation in the pose as a linear function of the motion of the actuators and the variation in the external loads through two new matrices: the compliant Jacobian matrix and the Cartesian compliance matrix that give a simple and meaningful formulation of the model of the mechanism. Finally, a simple application to a planar four-bar mechanism is presented to illustrate the use of this model and the new possibilities that it opens, notably the study of the kinematics for any range of applied load.


Author(s):  
Antonio Ruiz ◽  
Francisco Campa Gomez ◽  
Constantino Roldan-Paraponiaris ◽  
Oscar Altuzarra

The present work deals with the development of a hybrid manipulator of 5 degrees of freedom for milling moulds for microlenses. The manipulator is based on a XY stage under a 3PRS compliant parallel mechanism. The mechanism takes advantage of the compliant joints to achieve higher repetitiveness, smoother motion and a higher bandwidth, due to the high precision demanded from the process, under 0.1 micrometers. This work is focused on the kinematics of the compliant stage of the hybrid manipulator. First, an analysis of the workspace required for the milling of a single mould has been performed, calculating the displacements required in X, Y, Z axis as well as two relative rotations between the tool and the workpiece from a programmed toolpath. Then, the 3PRS compliant parallel mechanism has been designed using FEM with the objective of being stiff enough to support the cutting forces from the micromilling, but flexible enough in the revolution and spherical compliant joints to provide the displacements needed. Finally, a prototype of the 3PRS compliant mechanism has been built, implementing a motion controller to perform translations in Z direction and two rotations. The resulting displacements in the end effector and the actuated joints have been measured and compared with the FEM calculations and with the rigid body kinematics of the 3PRS.


2019 ◽  
Vol 11 (3) ◽  
Author(s):  
Xi Kang ◽  
Jian S. Dai

The parallel mechanism with a reconfigurable platform retains all advantages of parallel mechanisms and provides additional functions by virtue of the reconfigurable platform, leading to kinematic coupling between limbs that restricts development of the mechanism. This paper aims at dealing with kinematic coupling between limbs by investigating the transferability of limb constraints and their degrees of relevance to the platform constraints based on the geometric model of the mechanism. The paper applies screw-system theory to verifying the degree of relevance between limb constraint wrenches and platform constraint wrenches, and reveals the transferability of limb constraints, to obtain the final resultant wrenches and twists of the end effector. The proposed method is extended to parallel mechanisms with planar n-bar reconfigurable platforms, spherical n-bar reconfigurable platforms, and other spatial reconfigurable platforms and lends itself to a way of studying a parallel mechanism with a reconfigurable platform.


Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 66
Author(s):  
Maurizio Ruggiu ◽  
Xianwen Kong

This paper deals with the reconfiguration analysis of a 3-DOF (degrees-of-freedom) parallel manipulator (PM) which belongs to the cylindrical parallel mechanisms family. The PM is composed of a base and a moving platform shaped as equilateral triangles connected by three serial kinematic chains (legs). Two legs are composed of two universal (U) joints connected by a prismatic (P) joint. The third leg is composed of a revolute (R) joint connected to the base, a prismatic joint and universal joint in sequence. A set of constraint equations of the 1-RPU−2-UPU PM is derived and solved in terms of the Euler parameter quaternion (a.k.a. Euler-Rodrigues quaternion) representing the orientation of the moving platform and of the Cartesian coordinates of the reference point on the moving platform. It is found that the PM may undergo either the 3-DOF PPR or the 3-DOF planar operation mode only when the base and the moving platform are identical. The transition configuration between the operation modes is also identified.


Author(s):  
Ting-Li Yang ◽  
An-Xin Liu ◽  
Qiong Jin ◽  
Yu-Feng Luo ◽  
Hui-Ping Shen ◽  
...  

This paper presents the explicit mapping relations between topological structure of parallel mechanism and position and orientation characteristic (in short, POC) of its motion output link. It deals with: (1) The symbolic representation and the invariant of topological structure of mechanism; (2) The matrix representation of POC of motion output link; (3) The POC equations of parallel mechanism and its symbolic operation rules. The symbolic operation involves simple mathematic tools and fewer operation rules, and has clear geometrical meaning. So, it is easy to use. The forward operation of the POC equations can be used for structural analysis; its inverse operation can be used for structural synthesis. The method proposed in this paper is totally different from the methods based on screw theory and based on displacement subgroup.


Author(s):  
S J Zhang ◽  
D J Sanger ◽  
D Howard

A parallel mechanism is one whose links and joints form two or more serially connected chains which join the fixed base and the end effector The mechanism of a multi-legged walking machine can be considered as a parallel mechanism whose base is not fixed and whose configuration changes during different phases of its gait. This paper presents methods for analysing the mechanics of parallel mechanisms and walking machines using vector and screw algebra Firstly, displacement analysis is covered; this includes general methods for deriving the position vector of any joint in any leg and for calculating the active joint displacements in any leg. Secondly, velocity analysis is covered which tackles the problem of calculating active joint velocities given the velocity, position and the orientation of the body and the positions of the feet. Thirdly, the static analysis of these classes of mechanisms using the principle of virtual work and screw algebra is given. Expressions are derived for the actuator forces and torques required to balance a given end effector (or body) wrench and, in the case of a walking machine, the ground reactions at the feet. Numerical examples are given to demonstrate the application of these methods.


Robotica ◽  
2016 ◽  
Vol 35 (8) ◽  
pp. 1747-1760 ◽  
Author(s):  
MohammadHadi FarzanehKaloorazi ◽  
Mehdi Tale Masouleh ◽  
Stéphane Caro

SUMMARYThis paper proposes an interval-based approach in order to obtain the obstacle-free workspace of parallel mechanisms containing one prismatic actuated joint per limb, which connects the base to the end-effector. This approach is represented through two cases studies, namely a 3-RPR planar parallel mechanism and the so-called 6-DOF Gough–Stewart platform. Three main features of the obstacle-free workspace are taken into account: mechanical stroke of actuators, collision between limbs and obstacles and limb interference. In this paper, a circle(planar case)/spherical(spatial case) shaped obstacle is considered and its mechanical interference with limbs and edges of the end-effector is analyzed. It should be noted that considering a circle/spherical shape would not degrade the generality of the problem, since any kind of obstacle could be replaced by its circumscribed circle/sphere. Two illustrative examples are given to highlight the contributions of the paper.


2021 ◽  
Vol 12 (2) ◽  
pp. 983-995
Author(s):  
Shihua Li ◽  
Yajie Zhou ◽  
Yanxia Shan ◽  
Shuang Chen ◽  
Jinhan Han

Abstract. In the fields of electronic packaging, micromanipulation, scanning, and two translational (2T) mechanisms are required, especially with high stiffness, for a large workspace, with good driving stability, and other occasions. Redundant actuators are required to improve the performance of the 2T compliant parallel mechanism. The novelty of the work is to propose a new method for the type synthesis of a 2T redundant actuated compliant parallel mechanism based on the freedom and constraint topology (FACT) approach and the atlas approach. The synthesis conditions are given, and the synthesis process is formulated. With this method, new 2T redundant actuated compliant parallel mechanisms are synthesized. Some new mechanisms have been synthesized, which enriches the compliant parallel mechanism configurations. Based on the atlas method, the synthesized mechanism is analyzed. The results verify the correctness and effective of the synthesis method. The method is also suitable for a type of synthesis of redundant actuated compliant parallel mechanisms with 3, 4, 5, and 6 degrees of freedom (DOF), respectively.


1999 ◽  
Author(s):  
Luc H. Rolland

Abstract Two novel 4-DOF very fast parallel robots were designed. This paper introduces the new parallel mechanism designs which are named the Manta and the Kanuk. In order to reduce manipulator overall costs, the actuator and encoder numbers are minimized to the exact effective degrees-of-freedoms (DOF) which is usually not the case in most parallel robot designs. The robots allow end-effector displacements along the three Cartesian translations and one platform transversal rotation. The two remaining rotations are blocked by the intrinsic mechanical structure including the rotation along the platform normal which is always limited in range. The main advantages are high stiffness through the multiple kinematic chain structure which allow for low mass designs. Moreover, they feature simple mechanical construction. Thus, it shall be possible to achieve very high throughput since high accelerations are feasible. To circumvent the known workspace limitations, the actuators were selected to be prismatic along linear axes. The applications are automated warehouse manipulation, mediatheque manipulation, machine tool tool changers, loading and unloading.


Author(s):  
Sumin Park ◽  
Jongwon Kim ◽  
Giuk Lee

Previous studies on the optimal operation planning of redundantly actuated parallel mechanisms have focused on optimal torque distribution for a predefined trajectory. However, the optimized result obtained for a predefined trajectory cannot guarantee an optimal operation plan, because the torque distribution ability of a redundantly actuated parallel mechanism is highly dependent on the shape of the end-effector trajectory. Therefore, we can expect the redundantly actuated parallel mechanism performance to be enhanced when both the trajectory and torque distribution are optimized during the optimal operation planning stage. We propose a novel redundantly actuated parallel mechanism optimization procedure that can optimize both the end-effector trajectory and torque distribution. The proposed procedure is composed of two stages of optimizers, i.e. upper- and lower-level optimizers that generate the end-effector trajectory and distribute the torques along the generated trajectory, respectively. Composition of these two stages of the optimization procedure allows optimization of both the trajectory and torque distribution, despite the correlation between them. The proposed optimization procedure is simulated using two types of cost functions. All the simulation results show that the proposed procedure facilitates optimization of the end-effector trajectory and the torque distribution concurrently. Also, the cost function value is minimized to a greater extent than in the result with the optimal torque distribution along the initial trajectory.


Sign in / Sign up

Export Citation Format

Share Document