Design, Kinematics and Prototype of a Flexible Robot Arm With Planar Springs

Author(s):  
Peng Qi ◽  
Hongbin Liu ◽  
Lakmal Seneviratne ◽  
Kaspar Althoefer

Flexible robot arms have been developed for various medical and industrial applications because of their compliant structures enabling safe environmental interactions. This paper introduces a novel flexible robot arm comprising a number of elastically deformable planar spring elements arranged in series. The effects of flexure design variations on their layer compliance properties are investigated. Numerical studies of the different layer configurations are presented and finite Element Analysis (FEA) simulation is conducted. Based on the suspended platform’s motion of each planar spring, this paper then provides a new method for kinematic modeling of the proposed robot arm. The approach is based on the concept of simultaneous rotation and the use of Rodrigues’ rotation formula and is applicable to a wide class of continuum-style robot arms. At last, the flexible robot arms respectively integrated with two different types of compliance layers are prototyped. Preliminary test results are reported.

1990 ◽  
Vol 2 (2) ◽  
pp. 83-90
Author(s):  
Hiroyuki Kojima ◽  

In this paper, a finite element formulation method for a horizontal flexible robot arm with two links is first presented. In the analysis, the kinetic energy of the flexible arm is represented in brief compared with previous methods, and the matrix equation of motion in consideration of the nonlinear forces, such as the Coriolis force, is derived by the finite element method and the variational theorem. Then, the state equation of the mechatronics system consisting of the flexible arm and the position control system is obtained. Secondly, numerical simulations in the case of applying path control based on the trapezoidal velocity curve are carried out by use of the Wilson-<I>θ</I> method, and the effects of the bending rigidity and the shape of the trapezoidal velocity curve on the dynamic characteristics of the mechatronics system are demonstrated.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1459
Author(s):  
Varshitha Yashvanth ◽  
Sazzadur Chowdhury

This paper presents a novel technique to reduce acoustic crosstalk in capacitive micromachined ultrasonic transducer (CMUT) arrays. The technique involves fabricating a thin layer of diisocyanate enhanced silica aerogel on the top surface of a CMUT array. The silica aerogel layer introduces a highly nanoporous permeable layer to reduce the intensity of the Scholte wave at the CMUT-fluid interface. 3D finite element analysis (FEA) simulation in COMSOL shows that the developed technique can provide a 31.5% improvement in crosstalk reduction for the first neighboring element in a 7.5 MHz CMUT array. The average improvement of crosstalk level over the −6 dB fractional bandwidth was 22.1%, which is approximately 5 dB lower than that without an aerogel layer. The results are in excellent agreement with published experimental results to validate the efficacy of the new technique.


2000 ◽  
Vol 45 (3) ◽  
pp. 520-527 ◽  
Author(s):  
M.A. Arteaga ◽  
B. Siciliano

2021 ◽  
Vol 21 (4) ◽  
Author(s):  
Hytham Elwardany ◽  
Robert Jankowski ◽  
Ayman Seleemah

AbstractSeismic-induced pounding between adjacent buildings may have serious consequences, ranging from minor damage up to total collapse. Therefore, researchers try to mitigate the pounding problem using different methods, such as coupling the adjacent buildings with stiff beams, connecting them using viscoelastic links, and installing damping devices in each building individually. In the current paper, the effect of using linear and nonlinear fluid viscous dampers to mitigate the mutual pounding between a series of structures is investigated. Nonlinear finite-element analysis of a series of adjacent steel buildings equipped with damping devices was conducted. Contact surfaces with both contactor and target were used to model the mutual pounding. The results indicate that the use of linear or nonlinear dampers leads to the significant reduction in the response of adjacent buildings in series. Moreover, the substantial improvement of the performance of buildings has been observed for almost all stories. From the design point of view, it is concluded that dampers implemented in adjacent buildings should be designed to resist maximum force of 6.20 or 1.90 times the design independent force in the case of using linear or nonlinear fluid viscous dampers, respectively. Also, designers should pay attention to the design of the structural elements surrounding dampers, because considerable forces due to pounding may occur in the dampers at the maximum displaced position of the structure.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1830
Author(s):  
Yiheng Zhou ◽  
Baoquan Kou ◽  
He Zhang ◽  
Lu Zhang ◽  
Likun Wang

The multi-degree-of-freedom high-precision positioning system (MHPS) is one of the key technologies in many advanced industrial applications. In this paper, a novel hyperbolic magnetic field voice coil actuator using a rhombus magnet array (HMF-VCA) for MHPS is proposed. Benefiting from the especially designed rhombus magnet array, the proposed HMF-VCA has the advantage of excellent force uniformity, which makes it suitable for multi-degree-of-freedom high-precision positioning applications. First, the basic structure and operation principles of the HMF-VCA are presented. Second, the six-degree-of-freedom force and torque characteristic of the HMF-VCA is studied by three-dimensional finite element analysis (3-D FEA). Third, the influence of structural parameters on force density and force uniformity is investigated, which is conducive to the design and optimization of the HMF-VCA. Finally, a prototype is constructed, and the comparison between the HMF-VCA and conventional VCAs proves the advantage of the proposed topology.


1988 ◽  
Vol 29 (3) ◽  
pp. 459-467 ◽  
Author(s):  
James D. Lee ◽  
Ben-Li Wang

Sign in / Sign up

Export Citation Format

Share Document