Pseudo-Rigid-Body Models for End-Loaded Heavy Cantilever Beams

Author(s):  
Philip J. Logan ◽  
Craig P. Lusk

The large deflection of cantilever beams has been widely studied. A number of models and mathematical techniques have been utilized in predicting the path coordinates and load-deflection relationships of such beams. The Pseudo-Rigid-Body Model (PRBM) is one such method which replaces the elastic beam with rigid links of a parameterized pivot location and torsional spring stiffness. In this paper, the PRBM method is extended to include cases of a constant distributed load combined with a parallel endpoint force. The phase space of the governing differential equations is used to store information relevant to the characterization of the PRBM parameters. Correction factors are also given to decrease the error in the load-deflection relationship and extend the angular range of the model, thereby further aiding compliant mechanism design. Our calculations suggest a simple way of representing the effective torque caused by a distributed load in a PRBM as a function of easily calculated model parameters.

Author(s):  
Pratheek Bagivalu Prasanna ◽  
Ashok Midha ◽  
Sushrut G. Bapat

Abstract Understanding the kinematic properties of a compliant mechanism has always proved to be a challenge. A concept of compliance number offered earlier emphasized the development of terminology that aided in its determination. A method to evaluate the elastic degrees of freedom associated with the flexible segments/links of a compliant mechanism using the pseudo-rigid-body model (PRBM) concept is provided. In this process, two distinct classes of compliant mechanisms are developed involving: (i) Active Compliance and (ii) Passive Compliance. Furthermore, these also aid in a better characterization of the kinematic behavior of a compliant mechanism. A more lucid interpretation of the significance of compliance number is provided. Applications of this method to both active and passive compliant mechanisms are exemplified. Finally, an experimental procedure that aids in visualizing the degrees of freedom as calculated is presented.


Author(s):  
Allen B. Mackay ◽  
Spencer P. Magleby ◽  
Larry L. Howell

This paper presents a pseudo-rigid-body model (PRBM) for rolling-contact compliant beams (RCCBs). The loading conditions and boundary conditions for the RCCB can be simplified to an equivalent cantilever beam that has the same force-deflection characteristics as the RCCB. Building on the PRBM for cantilever beams, this paper defines a model for the force-deflection relationship for RCCBs. The definition of the RCCB PRBM includes the pseudo-rigid-body model parameters that determine the shape of the beam, the length of the corresponding pseudo-rigid-body links and the stiffness of the equivalent torsional spring. The behavior of the RCCB is parameterized in terms of a single parameter defined as clearance, or the distance between the contact surfaces. RCCBs exhibit a unique force-displacement curve where the force is inversely proportional to the clearance squared.


Author(s):  
Joby Pauly ◽  
Ashok Midha

Pseudo-rigid-body models help expedite the compliant mechanism design process by aiding the analysis and synthesis of candidate design solutions, using loop-closure techniques for rigid-body mechanisms. Opportunities for improvement were observed in the values of pseudo-rigid-body model parameters for compliant beams with nearly axial, tensile end force loads. This paper presents improved values for the affected parameters.


Author(s):  
Jairo Chimento ◽  
Craig Lusk ◽  
Ahmad Alqasimi

This paper presents the first three-dimensional pseudo-rigid body model (3-D PRBM) for straight cantilever beams with rectangular cross sections and spatial motion. Numerical integration of a system of differential equations yields approximate displacement and orientation of the beam’s neutral axis at the free-end, and curvatures of the neutral axis at the fixed-end. This data was used to develop the 3-D PRBM which consists of two torsional springs connecting two rigid links for a total of 2 degrees of freedom (DOF). The 3-D PRBM parameters that are comparable with existing 2-D model parameters are characteristic radius factor (means: γ = 0.8322), bending stiffness coefficient (means: KΘ = 2.5167) and parametric angle coefficient (means: cΘ = 1.2501). New parameters are introduced in the model in order to capture the spatial behavior of the deflected beam including two parametric angle coefficients (means: cΨ = 1.0714; cΦ = 1.0087).


1998 ◽  
Vol 120 (3) ◽  
pp. 392-400 ◽  
Author(s):  
A. Saxena ◽  
S. N. Kramer

Compliant members in flexible link mechanisms undergo large deflections when subjected to external loads. Because of this fact, traditional methods of deflection analysis do not apply. Since the nonlinearities introduced by these large deflections make the system comprising such members difficult to solve, parametric deflection approximations are deemed helpful in the analysis and synthesis of compliant mechanisms. This is accomplished by representing the compliant mechanism as a pseudo-rigid-body model. A wealth of analysis and synthesis techniques available for rigid-body mechanisms thus become amenable to the design of compliant mechanisms. In this paper, a pseudo-rigid-body model is developed and solved for the tip deflection of flexible beams for combined end loads. A numerical integration technique using quadrature formulae has been employed to solve the large deflection Bernoulli-Euler beam equation for the tip deflection. Implementation of this scheme is simpler than the elliptic integral formulation and provides very accurate results. An example for the synthesis of a compliant mechanism using the proposed model is also presented.


Author(s):  
A. Saxena ◽  
Steven N. Kramer

Abstract Compliant members in flexible link mechanisms undergo large deflections when subjected to external loads for which, traditional methods of deflection analysis do not apply Nonlinearities introduced by these large deflections make the system comprising such members difficult to solve Parametric deflection approximations are then deemed helpful in the analysis and synthesis of compliant mechanisms This is accomplished by seeking the pseudo-rigid-body model representation of the compliant mechanism A wealth of analysis and synthesis techniques available for rigid-body mechanisms thus become amenable to the design of compliant mechanisms In this paper, a pseudo-rigid-body model is developed and solved for the tip deflection of flexible beams for combined end loads with positive end moments A numerical integration technique using quadrature formulae has been employed to solve the nonlinear Bernoulli-Euler beam equation for the tip deflection Implementation of this scheme is relatively simpler than the elliptic integral formulation and provides nearly accurate results Results of the numerical integration scheme are compared with the beam finite element analysis An example for the synthesis of a compliant mechanism using the proposed model is also presented.


Author(s):  
Larry L. Howell ◽  
Ashok Midha

Abstract Compliant mechanisms gain some or all of their mobility from the flexibility of their members rather than from rigid-body joints only. More efficient and usable analysis and design techniques are needed before the advantages of compliant mechanisms can be fully utilized. In an earlier work, a pseudo-rigid-body model concept, corresponding to an end-loaded geometrically nonlinear, large-deflection beam, was developed to help fulfill this need. In this paper, the pseudo-rigid-body equivalent spring stiffness is investigated and new modeling equations are proposed. The result is a simplified method of modeling the force/deflection relationships of large-deflection members in compliant mechanisms. Flexible segments which maintain a constant end angle are discussed, and an example mechanism is analyzed. The resulting models are valuable in the visualization of the motion of large-deflection systems, as well as the quick and efficient evaluation and optimization of compliant mechanism designs.


Author(s):  
Andrew J. Nielson ◽  
Larry L. Howell

Abstract This paper uses a familiar classical mechanism, the pantograph, to demonstrate the utility of the pseudo-rigid-body model in the design of compliant mechanisms to replace rigid-link mechanisms, and to illustrate the advantages and limitations of the resulting compliant mechanisms. To demonstrate the increase in design flexibility, three different compliant mechanism configurations were developed for a single corresponding rigid-link mechanism. The rigid-link pantograph consisted of six links and seven joints, while the corresponding compliant mechanisms had no more than two links and three joints (a reduction of at least four links and four joints). A fourth compliant pantograph, corresponding to a rhomboid pantograph, was also designed and tested. The test results showed that the pseudo-rigid-body model predictions were accurate over a large range, and the mechanisms had displacement characteristics of rigid-link mechanisms in that range. The limitations of the compliant mechanisms included reduced range compared to their rigid-link counterparts. Also, the force-deflection characteristics were predicted by the pseudo-rigid-body model, but they did not resemble those for a rigid-link pantograph because of the energy storage in the flexible segments.


Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 376 ◽  
Author(s):  
Matteo Verotti ◽  
Alvise Bagolini ◽  
Pierluigi Bellutti ◽  
Nicola Pio Belfiore

This paper deals with the manipulation of micro-objects operated by a new concept multi-hinge multi-DoF (degree of freedom) microsystem. The system is composed of a planar 3-DoF microstage and of a set of one-DoF microgrippers, and it is arranged is such a way as to allow any microgripper to crawl over the stage. As a result, the optimal configuration to grasp the micro-object can be reached. Classical algorithms of kinematic analysis have been used to study the rigid-body model of the mobile platform. Then, the rigid-body replacement method has been implemented to design the corresponding compliant mechanism, whose geometry can be transferred onto the etch mask. Deep-reactive ion etching (DRIE) is suggested to fabricate the whole system. The main contributions of this investigation consist of (i) the achievement of a relative motion between the supporting platform and the microgrippers, and of (ii) the design of a process flow for the simultaneous fabrication of the stage and the microgrippers, starting from a single silicon-on-insulator (SOI) wafer. Functionality is validated via theoretical simulation and finite element analysis, whereas fabrication feasibility is granted by preliminary tests performed on some parts of the microsystem.


Author(s):  
Saurabh Jagirdar ◽  
Craig P. Lusk

The kinematic portion of a pseudo-rigid-body model (PRBM) is developed as a generalization from planar to spherical mechanisms. The topology of the spherical compliant segment and its rigid-body equivalent are derived from planar models by analogy. The nomenclature for the spherical PRBM is chosen to facilitate comparison with the planar PRBM. The motion of the compliant segment is calculated using FEA and PRBM parameters are determined. The characteristic radius and parametric angle coefficient are found to decrease as the angle subtended by the beam increases. The parameterization limit increases with increasing beam angle. The spherical PRBM is identical to the planar PRBM in the limiting case when beam angles become very small.


Sign in / Sign up

Export Citation Format

Share Document