Analysis of the Novel Two-Speed Uninterrupted Transmission With Centrifugal Clutch for Electric Vehicle

Author(s):  
Haijun Song ◽  
Jian Song ◽  
Shengnan Fang ◽  
Yuzhuo Tai ◽  
Fei Li ◽  
...  

Current research suggests that the performance of electric vehicle with a single-speed transmission can still be widely improved. The novel two-speed uninterrupted transmission consists of a single-row planetary, a centrifugal clutch, a brake, and two motor controlling clutch and brake. Changing the switch of clutch and brake can achieve two-speed uninterrupted gearshifts. Different from the traditional centrifugal clutch, a novel adjustable device is specifically designed to control the switch of clutch. Torque characteristics of clutch prototype are displayed. Some differences of the gearshift methodology are specifically designed to compensate for the characteristics of the electric traction motor and the adjustable centrifugal clutch. The specific simulation model is established according to the novel uninterrupted transmission prototype. The dynamic characteristics of the two-speed uninterrupted transmission system are analyzed. The higher utilization ratio of the traction motor power increases the efficiency of the traction motor with the novel two-speed uninterrupted transmission.

2013 ◽  
Vol 427-429 ◽  
pp. 133-136
Author(s):  
Qiang Song ◽  
Pu Zeng

The driving theory and the dynamic characteristics of small radius steering, medium radius steering and big radius steering is analyzed, and the simulation model is established under Matlab/Simulink. Then the track bulldozers steering performance of the three sheerings is simulated. The results show that, at different steering modes, the running states of the two sides driving motors are not the same, and the track driving forces of the two sides vary widely. The track driving force is great in the small radius steering model, while small in the medium and big radius steering models. The simulation results lay the foundation for dual-motor drive track bulldozers steering performance matching.


2021 ◽  
pp. 1-14
Author(s):  
Bin Zhang ◽  
Xianwen Gao ◽  
Xiangyu Li

Summary In this paper, we study the simulation and fault diagnosis of a conventional pumping unit under balanced conditions. As the energy input of sucker-rod pumping (SRP), the motor power contains abundant information about the whole pumping cycle under SRP. It is an important step in oilfield information construction to establish a computer-aided system that is based on motor power diagnosis. Hence, we propose an SRP simulation model for generating motor power. By analyzing the working conditions of six oil wells that contain normal or insufficient liquid supply, gas lock, traveling valve leakage, standing valve leakage, and parting rod, we simulate the motor power of the six wells. In addition, we verify the simulation model using a test well with favorable performance and establish the motor power template set (MPTS) using this simulation model. To allow for computer-aided diagnosis, we propose the use of the area proportion method to extract motor power features. We establish a diagnosis model of oilwell conditions that is based on oblique decision tree and train the diagnosis model using the MPTS. Through the verification of six oil wells in the actual production of the oil field, the diagnosis model shows a favorable response. The test results show that the methods of establishing MPTS and oilwell working-condition diagnosis are feasible.


Sign in / Sign up

Export Citation Format

Share Document