Kineto-Elastic Analysis of a Compound Bow

Author(s):  
Ming Yang ◽  
Yuyi Lin ◽  
Xiaoyi Jin

This paper presents the kineto-elastic analysis of a compound bow which in each side of the limbs has two stacked eccentric cams connected by two inextensible cables and one inextensible string. A large deformation cantilever beam model was created to determine the center trajectories of the cams. The principle of finite element method was applied to calculate the deformation of the limbs by combining small deflections of segmented cantilever beam elements. Another part of this work is the construction of a quasi-static model to simulate the draw process. The displacements of cams, cables and string were analyzed by gradually drawing the bow string. The required draw force as a function of draw length was obtained, and verified by experiments. The kineto-elastic analysis procedure described in this paper can be used later for the optimal design of the shapes of the cams and limbs. The modeling and simulation procedure used for combining elastic components, flexible but inextensible string-cable components, and rigid component in a precision dynamic model of a mechanical system can also be applied to archery bows with more complex configuration, and to other similar mechanical systems.

2021 ◽  
Author(s):  
Zhijun Wang ◽  
Akke S. J. Suiker ◽  
Hèrm Hofmeyer ◽  
Twan van Hooff ◽  
Bert Blocken

AbstractA sequentially coupled shape and topology optimization framework is presented in which the outer geometry and the internal topological layout of beam-type structures are optimized simultaneously. The outer geometry of the beam-type structures is parametrically described by non-uniform rational B-splines (NURBS), which guarantees a highly accurate description of the structural shape and enable an efficient control of the design domain with only a few control points. The computational efficiency of the coupled optimization approach is assured by applying a gradient-based optimization algorithm, for which the sensitivities are derived in closed form. The formulation of the coupled optimization approach is tailored toward 2.5D and full 3D representations of beam structures used in engineering applications. The 2.5D beam model, which has been taken from the literature, uses standard beam elements to simulate the beam response in the longitudinal direction, whereby the cross-sectional properties of the beam elements are calculated from additional 2D finite element method (FEM) analyses. A comparison study of a cantilever beam problem subjected to pure shape optimization and pure topology optimization illustrates that the 2.5D and 3D beam models lead to similar shape and topology designs, but that the 2.5D beam model has a significantly higher computational efficiency. Specifically, the computational times for the 2.5D model are about a factor 70 (shape optimization) and 1.4 (topology optimization) lower than for the 3D model, which indicates that in the coupled optimization approach the optimization of the shape provides the largest contribution to the higher computational efficiency of the 2.5D model. The coupled shape and topology optimization analysis subsequently performed on the 2.5D cantilever beam model demonstrates that the specific order at which the alternating shape and topology optimization increments are performed in the staggered update procedure turns out to have some influence on the computational speed and the value of the minimal compliance computed. Despite these differences, the final beam structures following from the different staggered update procedures illustrate how shape and topology can be efficiently optimized in an integrated, coupled fashion.


Author(s):  
Gen Fu ◽  
Alexandrina Untaroiu ◽  
Walter O’Brien

The measurement of the aeromechanical response of the fan blades is important to quantifying their integrity. The accurate knowledge of the response at critical locations of the structure is crucial when assessing the structural condition. A reliable and low cost measuring technique is necessary. Currently, sensors can only provide the measured data at several discrete points. A significant number of sensors may be required to fully characterize the aeromechanical response of the blades. However, the amount of instrumentation that can be placed on the structure is limited due to data acquisition system limitations, instrumentation accessibility, and the effect of the instrumentation on the measured response. From a practical stand point, it is not possible to place sensors at all the critical locations for different excitations. Therefore, development of an approach that derives the full strain field response based on a limited set of measured data is required. In this study, the traditional model reduction method is used to expand the full strain field response of the structure by using a set of discrete measured data. Two computational models are developed and used to verify the expansion approach. The solution of the numerical model is chosen as the reference solution. In addition, the numerical model also provides the mode shapes of the structure. In the expansion approach, this information is used to develop the algorithm. First, a cantilever beam model is created. The influences of the sensor location, number of sensors and the number of modes included are analyzed using this cantilever beam model. The expanded full field response data is compared with the reference solution to evaluate the expansion procedure. The rotor 67 blade model is then used to test the expansion method. The results show that the expanded full field data is in good agreement with the calculated data. The expansion algorithm can be used for the full field strain by using the limited sets of strain data.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
J. Machalová ◽  
H. Netuka

Contact problem for a large deformed beam with an elastic obstacle is formulated, analyzed, and numerically solved. The beam model is governed by a nonlinear fourth-order differential equation developed by Gao, while the obstacle is considered as the elastic foundation of Winkler’s type in some distance under the beam. The problem is static without a friction and modeled either using Signorini conditions or by means of normal compliance contact conditions. The problems are then reformulated as optimal control problems which is useful both for theoretical aspects and for solution methods. Discretization is based on using the mixed finite element method with independent discretization and interpolations for foundation and beam elements. Numerical examples demonstrate usefulness of the presented solution method. Results for the nonlinear Gao beam are compared with results for the classical Euler-Bernoulli beam model.


2018 ◽  
Vol 35 (4) ◽  
pp. 465-474 ◽  
Author(s):  
L. Liu ◽  
H. Jiang ◽  
Y. Dong ◽  
L. Quan ◽  
Y. Tong

ABSTRACTFlexibility is a particularly important biomechanical property for intracranial vascular stents. To study the flexibility of stent, the following work was carried out by using the finite element method: Four mechanical models were adopted to simulate the bending deformation of stents, and comparative studies were conducted about the distinction between cantilever beam and simply supported beam, as well as the distinction between moment-loading method and displacement-loading method. A complete process as implanting a stent including compressing, expanding and bending was also simulated, for analyzing the effects of compressing and expanding deformation on stent flexibility. At the same time, the effects of the arrangement and the number of bridges on stent flexibility were researched. The results show that: 1. A same flexibility index was obtained from cantilever beam model and simply supported beam model; displacement-loading method is better than moment-loading for simulating the bending deformation of stents. 2. The flexibility of stent with compressing and expanding deformation is lower than that in the initial form. 3. Crossly arranging the neighboring bridges in axial direction, can effectively improve the stent flexibility and reduce the flexibility difference in various bending directions; the bridge number, has proportional non-linear correlation with the stent rigidity as well as the maximum moment required for bending the stent.


1997 ◽  
Vol 1 (2) ◽  
pp. 159-165 ◽  
Author(s):  
Wibisono Hartono

This paper presents a nonlinear elastic analysis of cantilever beam subjected to two follower forces. Those two proportional forces are always perpendicular to the beam axis. The solution of differential equations based on the large displacement theory, known as elastica is obtained with the help of principle of elastic similarity. For comparison purpose, numerical results using the finite element method are also presented and the results show good agreement.


2021 ◽  
Vol 30 ◽  
pp. 87-92
Author(s):  
Emma La Malfa Ribolla ◽  
Milan Jirásek ◽  
Martin Horák

The present work focuses on the 2-D formulation of a nonlinear beam model for slender structures that can exhibit large rotations of the cross sections while remaining in the small-strain regime. Bernoulli-Euler hypothesis that plane sections remain plane and perpendicular to the deformed beam centerline is combined with a linear elastic stress-strain law.The formulation is based on the integrated form of equilibrium equations and leads to a set of three first-order differential equations for the displacements and rotation, which are numerically integrated using a special version of the shooting method. The element has been implemented into an open-source finite element code to ease computations involving more complex structures. Numerical examples show a favorable comparison with standard beam elements formulated in the finite-strain framework and with analytical solutions.


Author(s):  
Oscar Rios ◽  
Ardavan Amini ◽  
Hidenori Murakami

Presented in this study is a mathematical model and preliminary experimental results of a ribbed caudal fin to be used in an aquatic robot. The ribbed caudal fin is comprised of two thin beams separated by ribbed sectionals as it tapers towards the fin. By oscillating the ribbed caudal fin, the aquatic robot can achieve forward propulsion and maneuver around its environment. The fully enclosed system allows for the aquatic robot to have very little effect on marine life and fully blend into its respective environment. Because of these advantages, there are many applications including surveillance, sensing, and detection. Because the caudal fin actuator has very thin side walls, Kirchhoff-Love’s large deformation beam theory is applicable for the large deformation of the fish-fin actuator. In the model, it is critical to accurately model the curvature of beams. To this end, C1 beam elements for thin beams are developed by specializing the shear-deformable beam elements, developed by the authors, based upon Reissner’s shear-deformable nonlinear beam model. Furthermore, preliminary experiments on the ribbed fin are presented to supplement the FE model.


Sign in / Sign up

Export Citation Format

Share Document