scholarly journals Kinematics, Workspace and Singularity Analysis of a Multi-Mode Parallel Robot

Author(s):  
Damien Chablat ◽  
Xianwen Kong ◽  
Chengwei Zhang

A family of reconfigurable parallel robots can change motion modes by passing through constraint singularities by locking and releasing some passive joints of the robot. This paper is about the kinematics, the workspace and singularity analysis of a 3-PRPiR parallel robot involving lockable Pi and R (revolute) joints. Here a Pi joint may act as a 1-DOF planar parallelogram if its lockable P (prismatic) joint is locked or a 2-DOF RR serial chain if its lockable P joint is released. The operation modes of the robot include a 3T operation modes to three 2T1R operation modes with two different directions of the rotation axis of the moving platform. The inverse kinematics and forward kinematics of the robot in each operation modes are dealt with in detail. The workspace analysis of the robot allow us to know the regions of the workspace that the robot can reach in each operation mode. A prototype built at Heriot-Watt University is used to illustrate the results of this work.

2018 ◽  
Vol 10 (3) ◽  
Author(s):  
Damien Chablat ◽  
Xianwen Kong ◽  
Chengwei Zhang

Most multimode parallel robots can change operation modes by passing through constraint singularities. This paper deals with a comprehensive kinematic study of a three degrees-of-freedom (DOF) multimode three-PRPiR parallel robot developed at Heriot-watt University. This robot is able to reach several operation modes without crossing any constraint singularity by using lockable Pi and R joints. Here, a Pi joint may act as a 1DOF planar parallelogram if its lockable P (prismatic) joint is locked or a 2DOF RR serial chain if its lockable P joint is released. The operation modes of the robot include a 3T operation mode and four 2T1R operation modes with two different directions of the rotation axis of the moving platform. The inverse kinematics and forward kinematics of the robot in each operation mode are dealt with in detail. The joint space and workspace analysis of the robot allow us to know the regions of the workspace that the robot can reach in each operation mode. It is shown that the robot is able to change assembly mode in one operation mode by passing through another operation mode.


2020 ◽  
Vol 17 (6) ◽  
pp. 822-836
Author(s):  
Auday Al-Mayyahi ◽  
Ammar A. Aldair ◽  
Chris Chatwin

Abstract3-RRR planar parallel robots are utilized for solving precise material-handling problems in industrial automation applications. Thus, robust and stable control is required to deliver high accuracy in comparison to the state of the art. The operation of the mechanism is achieved based on three revolute (3-RRR) joints which are geometrically designed using an open-loop spatial robotic platform. The inverse kinematic model of the system is derived and analyzed by using the geometric structure with three revolute joints. The main variables in our design are the platform base positions, the geometry of the joint angles, and links of the 3-RRR planar parallel robot. These variables are calculated based on Cayley-Menger determinants and bilateration to determine the final position of the platform when moving and placing objects. Additionally, a proposed fractional order proportional integral derivative (FOPID) is optimized using the bat optimization algorithm to control the path tracking of the center of the 3-RRR planar parallel robot. The design is compared with the state of the art and simulated using the Matlab environment to validate the effectiveness of the proposed controller. Furthermore, real-time implementation has been tested to prove that the design performance is practical.


2011 ◽  
Vol 121-126 ◽  
pp. 1590-1594
Author(s):  
Yan Shi ◽  
Hong Xin Yue ◽  
Yi Lu ◽  
Lian He Guo

Firstly, 3-DOF parallel robots were classified into different types from the view of moving form. A new method of analyzing the singularity of 3-DOF parallel robots was introduced, which is based on translational Jacobian matrix and rotational Jacobian matrix. The singularity of parallel robots with pure translational form and pure rotational form was introduced summarily. Secondly, the process of solving the plane-symmetry 3-RPS parallel robot with combined moving forms was focused on, through which translational Jacobian matrix and rotational Jacobian matrix were adopted. Finally, the solving results were compared with the axis-symmetry 3-RPS parallel robot, which showed more general singularity can be solved through the new method.


2021 ◽  
Author(s):  
Luquan Li ◽  
Yuefa Fang ◽  
Lin Wang ◽  
Jiaqiang Yao

Abstract Due to the complex structures of multi-limbed parallel robots, conventional parallel robots generally have limited workspace, complex kinematics, and complex dynamics, which increases the application difficulty of parallel robot in industrial engineering. To solve the above problems, this paper proposes a single-loop Schönflies motion parallel robot with full cycle rotation, the robot can generate Schönflies motion by the most simplified structure. The novel Schönflies motion parallel robot is a two-limb parallel mechanism with least links and joints, and each limb is driven by a 2-degree of freedom (DOF) cylindrical driver (C-driver). The full cycle rotation of the output link is achieved by “…R-H…” structure, where the revolute (R) and helical (H) joints are coaxial. Mobility, kinematics, workspace and singularity analysis of novel Schönflies motion parallel robot are analyzed. Then, dynamic model is formulated based on the principle of virtual work. Moreover, a pick-and-place task is implemented by proposed Schönflies motion parallel robot and a serial SCARA robot, respectively. The simulation results verify the correctness of the theoretical model. Furthermore, dynamics performances of Schönflies motion parallel robot and serial SCARA robot are compared, which reveal the performance merits of proposed Schönflies motion parallel robot.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Latifah Nurahmi ◽  
Dongming Gan

Abstract This paper focuses on the reconfiguration of a 3-(rR)PS metamorphic parallel mechanism based on complete workspace and operation mode analysis. The mechanism consists of three (rR)PS legs, and each (rR) joint is composed of two perpendicular revolute joints. One of the (rR) joint axes can be reconfigured continuously, which allows the mechanism to exhibit three distinct configurations. Initially, the constraint equations are derived by using algebraic geometry approach, and the primary decomposition is computed for the three configurations. It reveals that the 3-(rR)PS metamorphic parallel mechanism can exhibit one up to two operation modes among three configurations. When the second axes of the three (rR) joints intersect at a finite point and not coplanar, the 3-(rR)PS metamorphic parallel mechanism has only one operation mode. If the second axes of the three (rR) joints are coplanar, the 3-(rR)PS metamorphic parallel mechanism has two operation modes. It is shown that both operation modes have the same motion type, namely, 1T2R motion. However, to realize the same trajectories in both operation modes, the moving platform will have different orientations. Hence, the orientation workspaces of both operation modes are characterized and the axodes are used to compare the instantaneous motion of the moving platform when passing through the same trajectories. Based on these results, an identification approach is introduced to identify which operation mode a given mechanism pose belongs to and this provides a useful method for trajectory planning.


Author(s):  
Jun-Mu Heo ◽  
Sung-hyun Choi ◽  
Kyoung-Su Park

Cable driven parallel robots (CDPRs) are a class of parallel robots in which the rigid links are replaced by cables. It consists of a moving end-effector and a number of active cables connected to the end-effector.


Robotica ◽  
2019 ◽  
Vol 38 (1) ◽  
pp. 1-14
Author(s):  
Changxi Cheng ◽  
Wenkai Huang ◽  
Chunliang Zhang

SummaryParallel robots are widely used in the fields of manufacturing, medical science, education, scientific research, etc. Many studies have been conducted on the topic already. However, shortcomings still exist, especially in certain situations. To meet the demand of good speed and load performances at the same time, this work presents a novel 2-degree-of-freedom parallel robot. The structural design, static, stiffness, and reachable workspace analysis of the robot are given in the manuscript. Experiment regarding the accuracy and speed performance is conducted, and the results are provided. In the end, potential applications of the proposed robot are suggested.


Author(s):  
Ming Huang

A study of workspace and singularity characteristics is presented for two common types of 3-DOF planar parallel robot manipulators. The robots considered feature a kinematic structure with 3 in-parallel actuated, R-R-R and R-P-R serial chain geometries. In this study, computer simulations aided with graphic visualization were used to characterize the complete pose workspace (for ranges of both position and orientation) and the singularity inherent to the systems. Parametric studies have also been performed to ascertain the way in which both characteristics vary with respect to various geometric parameters such as pivot location, link length, and platform size for end-effector. Results are shown by way of a unique composite ratio of the available workspace to the density of singularity within that workspace.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 7
Author(s):  
Tommaso Marchi ◽  
Giovanni Mottola ◽  
Josep M. Porta ◽  
Federico Thomas ◽  
Marco Carricato

Parallel robots with configurable platforms are a class of robots in which the end-effector has an inner mobility, so that its overall shape can be reconfigured: in most cases, the end-effector is thus a closed-loop kinematic chain composed of rigid links. These robots have a greater flexibility in their motion and control with respect to rigid-platform parallel architectures, but their kinematics is more challenging to analyze. In our work, we consider n-RRR planar configurable robots, in which the end-effector is a chain composed of n links and revolute joints, and is controlled by n rotary actuators located on the base of the mechanism. In particular, we study the geometrical design of such robots and their direct and inverse kinematics for n=4, n=5 and n=6; we employ the bilateration method, which can simplify the kinematic analysis and allows us to generalize the approach and the results obtained for the 3-RRR mechanism to n-RRR robots (with n>3). Then, we study the singularity configurations of these robot architectures. Finally, we present the results from experimental tests that have been performed on a 5–RRR robot prototype.


2015 ◽  
Vol 762 ◽  
pp. 125-130
Author(s):  
Luciana Cristina Dudici ◽  
Ion Simionescu

The major disadvantage of the parallel robot is that the singular positions are comprised into the work space. The singular positions are the particular poses for parallel robot DELTA where the mobility of the structure is not longer zero when the actuators are locked. Present analysis is focused on the determinant value of the Jacobian matrix of the kinematic analysis equation system, written using Denavit – Hartenberg transformation matrices. The kinematic equations possess the algebraic and trigonometric character, so that the inverse singularity analysis can be formulated. By instantaneous mobility analysis of the moving platform of the parallel robots, the geometric conditions for the forward singularity configurations are identified. Finally, a numerical example is solved in order to illustrate the variation of the Jacobian determinant in the proximity of a singular position.


Sign in / Sign up

Export Citation Format

Share Document