Data-Driven Probabilistic Thermal Stress Analysis of a Gas Turbine Casing

Author(s):  
Zixi Han ◽  
Mian Li ◽  
Zixian Jiang ◽  
Zuoxing Min ◽  
Sophie Bourmich

Strength requirement is one of the most important criteria in the design of gas turbine casing. Traditionally, deterministic analyses are used in strength assessment, with boundary conditions and loads set as fixed design values. However, real boundary conditions and loads in the operation can often differ from the fixed design values, such that the mechanical integrity of the turbine casing can vary from the strength and fatigue calculations. In this work, the effect of the variability of the boundary conditions and loads is investigated on the static thermal stress problem of gas turbine casings using a probabilistic approach. The probability distribution is estimated using a Monte Carlo simulation based on the distribution of boundary conditions and loads obtained from field measurements. The finite element analysis is used to calculate the stress corresponding to different boundary conditions and a surrogate model is built to reduce the computational time of Monte Carlo simulations. This methodology is applied to a real engineering case which better quantifies the strength assessment result.

2020 ◽  
Vol 19 (4) ◽  
pp. 23-30
Author(s):  
T. V. Pyrohov ◽  
◽  
A. V. Korolev ◽  

During the assessment of the static strength of the flange connections elements Dn2130 and Dn2080 of the emergency cooling heat exchangers 08.8111.335 SB (TOAR), it was found that there is an excess of the allowable stress values. These calculations of static strength performed using the finite element method (FEM). The analysis of the static strength of the flange joints was performed taking into account the design values of the tightening of the studs, equal to 22,527 kgf and 8,836 kgf, accordingly. At the same time, one of the main purposes of heat exchangers TOAR nuclear installation (NI) WWER-1000 is the work until accidents. The analysis of accidents of NI WWER-1000 showed that the largest values of change of parameters of environments in heat exchangers of TOAR correspond to accident “LOCA: Bilateral rupture of MCT”. Based on this, we considered the thermal stress state of heat exchangers for this accident. To determine the thermal stress state of the TOAR heat exchanger elements, during accidents of the nuclear installation, strength calculations were performed in the non-stationary formulation of the problem. One of the boundary conditions for these strength calculations is the distribution of temperatures along the thickness and length of the walls of the elements of the heat exchanger, which changes over time. Numerical thermohydraulic calculations were performed to determine these boundary conditions. In the article for the first time the results of calculations of thermal stress state of separate elements of heat exchangers TOAR, for work of heat exchangers during accidents of nuclear installation are received. It is established that the elements of the flange connection Dn2130 are one of the most critical elements of TOAR heat exchangers. To determine the thermal stress state of the heat exchanger elements, analytical thermal calculations, numerical thermohydraulic and strength calculations were performed using the FEM method. As a result of the analysis of the performed strength calculations, it was concluded that it is necessary to reduce the tightening value of the flanges of the flange connection Dn2130 to 14600 kgf.


Author(s):  
Federico Funghi ◽  
Paolo di Sisto

One of the possible constraint configuration of an annular combustion chamber in a gas turbine is by means of radial pins. Radial pins usually connect the outer turbine casing to the combustor dome and fix combustor axial and circumferential displacements while allowing combustor free radial deformation, under thermal loads. In the typical mounting scheme, radial pins are screwed on the outer casing and then inserted into dedicated housing holes on the dome. Because of this arrangement the force (introduced by mechanical, thermal and dynamic loads) reacted by each pin is inherently not deterministic since it depends on the actual gap between the pin itself and the housing bush on the dome, which, in turn, is not explicitly known, being a function of the overall tolerance stack up. The scope of this study was to develop a method to design the radial pins of NovaLT™16 (*) combustion chamber, applicable since the conceptual phase, using a probabilistic approach [7]. Actual pin-bush gap distribution is calculated from stack up analysis and then used as input for a numerical simulation which computes the distribution of the reaction force on each pin, as a function of number of pins, stiffness of the pin, gap between pin and bush. Two different arrangements have been considered: the classic scheme and the floating pin configuration. The new probabilistic design approach allowed to have a robust understanding of the force distribution within the whole set of pins, to compute the optimal combination of pin number, pin stiffness, and gap and ultimately to select the floating pin configuration as the one to be implemented in NovaLT16 combustor. Test results revealed pin contact distribution was in line with predictions.


2021 ◽  
Vol 11 (4) ◽  
pp. 1482
Author(s):  
Róbert Huňady ◽  
Pavol Lengvarský ◽  
Peter Pavelka ◽  
Adam Kaľavský ◽  
Jakub Mlotek

The paper deals with methods of equivalence of boundary conditions in finite element models that are based on finite element model updating technique. The proposed methods are based on the determination of the stiffness parameters in the section plate or region, where the boundary condition or the removed part of the model is replaced by the bushing connector. Two methods for determining its elastic properties are described. In the first case, the stiffness coefficients are determined by a series of static finite element analyses that are used to obtain the response of the removed part to the six basic types of loads. The second method is a combination of experimental and numerical approaches. The natural frequencies obtained by the measurement are used in finite element (FE) optimization, in which the response of the model is tuned by changing the stiffness coefficients of the bushing. Both methods provide a good estimate of the stiffness at the region where the model is replaced by an equivalent boundary condition. This increases the accuracy of the numerical model and also saves computational time and capacity due to element reduction.


1998 ◽  
Vol 120 (2) ◽  
pp. 296-302 ◽  
Author(s):  
Masato Ikegawa ◽  
Jun’ichi Kobayashi ◽  
Morihisa Maruko

As integrated circuits are advancing toward smaller device features, step-coverage in submicron trenches and holes in thin film deposition are becoming of concern. Deposition consists of gas flow in the vapor phase and film growth in the solid phase. A deposition profile simulator using the direct simulation Monte Carlo method has been developed to investigate deposition profile characteristics on small trenches which have nearly the same dimension as the mean free path of molecules. This simulator can be applied to several deposition processes such as sputter deposition, and atmospheric- or low-pressure chemical vapor deposition. In the case of low-pressure processes such as sputter deposition, upstream boundary conditions of the trenches can be calculated by means of rarefied gas flow analysis in the reactor. The effects of upstream boundary conditions, molecular collisions, sticking coefficients, and surface migration on deposition profiles in the trenches were clarified.


Author(s):  
Mitsuaki Kato ◽  
Kenji Hirohata ◽  
Akira Kano ◽  
Shinya Higashi ◽  
Akihiro Goryu ◽  
...  

Non invasive fractional flow reserve derived from CT coronary angiography (CT-FFR) has to date been typically performed using the principles of computational fluid analysis in which a lumped parameter coronary vascular bed model is assigned to represent the impedance of the downstream coronary vascular networks absent in the computational domain for each coronary outlet. This approach may have a number of limitations. It may not account for the impact of the myocardial contraction and relaxation during the cardiac cycle, patient-specific boundary conditions for coronary artery outlets and vessel stiffness. We have developed a novel approach based on 4D-CT image tracking (registration) and structural and fluid analysis based on one dimensional mechanical model, to address these issues. In our approach, we analyzed the deformation variation of vessels and the volume variation of vessels to better define boundary conditions and stiffness of vessels. We focused on the blood flow and vessel deformation of coronary arteries and aorta near coronary arteries in the diastolic cardiac phase from 70% to 100 %. The blood flow variation of coronary arteries relates to the deformation of vessels, such as expansion and contraction of the cross-sectional area, during this period where resistance is stable, pressure loss is approximately proportional to flow. We used a statistical estimation method based on a hierarchical Bayes model to integrate 4D-CT measurements and structural and fluid analysis data. Under these analysis conditions, we performed structural and fluid analysis to determine pressure, flow rate and CT-FFR. Furthermore, the reduced-order model based on fluid analysis was studied in order to shorten the computational time for 4D-CT-FFR analysis. The consistency of this method has been verified by a comparison of 4D-CT-FFR analysis results derived from five clinical 4D-CT datasets with invasive measurements of FFR. Additionally, phantom experiments of flexible tubes with and without stenosis using pulsating pumps, flow sensors and pressure sensors were performed. Our results show that the proposed 4D-CT-FFR analysis method has the potential to accurately estimate the effect of coronary artery stenosis on blood flow.


Author(s):  
Zhenfeng Wang ◽  
Peigang Yan ◽  
Hongyan Huang ◽  
Wanjin Han

The ANSYS-CFX software is used to simulate NASA-Mark II high pressure air-cooled gas turbine. The work condition is Run 5411 which have transition flow characteristics. The different turbulence models are adopted to solve conjugate heat transfer problem of this three-dimensional turbine blade. Comparing to the experimental results, k-ω-SST-γ-θ turbulence model results are more accurate and can simulate accurately the flow and heat transfer characteristics of turbine with transition flow characteristics. But k-ω-SST-γ-θ turbulence model overestimates the turbulence kinetic energy of blade local region and makes the heat transfer coefficient higher. It causes that local region temperature of suction side is higher. In this paper, the compiled code adopts the B-L algebra model and simulates the same computation model. The results show that the results of B-L model are accurate besides it has 4% temperature error in the suction side transition region. In addition, different turbulence characteristic boundary conditions of turbine inner-cooling passages are given and K-ω-SST-γ-θ turbulence model is adopted in order to obtain the effect of turbulence characteristic boundary conditions for the conjugate heat transfer computation results. The results show that the turbulence characteristic boundary conditions of turbine inner-cooling passages have a great effect on the conjugate heat transfer results of high pressure gas turbine. ANSYS is applied to analysis the thermal stress of Mark II blade which has ten radial cooled passages and the results of Von Mises stress show that the temperature gradient results have a great effect on the results of blade thermal stress.


Sign in / Sign up

Export Citation Format

Share Document